Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 34609 Accepted Submission(s): 15327
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6
1 6 5 2 3 4
Case 2: 1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
这道题就是回溯暴力。 首先打出一个素数表, 然后DFS回溯判断即可。
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int is_prime(int x) { for(int i=2; i*i<=x; i++) if(x%i==0) return 0; return 1; } int n, A[50]; bool isp[50], vis[50]; void dfs(int cur) { if(cur==n&&isp[A[0]+A[n-1]]) { for(int i=0; i<n-1; i++) { printf("%d ", A[i]); } printf("%d\n", A[n-1]); } else for(int i=2; i<=n; i++) if(!vis[i]&&isp[i+A[cur-1]]) { A[cur] = i; vis[i] = 1; dfs(cur+1); vis[i]=0; } } int main() { int kase = 0; while(scanf("%d", &n)!=EOF) { printf("Case %d:\n", ++kase); for(int i=2; i<=n*2; i++) isp[i] = is_prime(i); memset(vis, 0, sizeof(vis)); A[0] = 1; dfs(1); printf("\n"); } return 0; }