根据a(n)/a(n-1)的无理数极限逆推二阶线性递推数列公式

首先看这样一道题目:

a(n)=6*a(n-1)-a(n-2),a1=1,a2=5,求b(n)=a(n+1)/a(n)的极限 

数列通项两边除以a(n-1)

得:

a(n)/a(n-1)=6-a(n-1)/a(n-2)

根据单调有界定理可以证明极限存在

单调性可以用数学归纳法证明,不再赘述

设极限为x

则x=6-1/x

x^2-6*x+1=0

解一元二次方程得

x=3+2√2

我举这个例子,是因为,这个例子和2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络E题的数列很像,只不过在后面减了个2,是不影响极限大小的

当时,我们算出来的极限是这样子的:

这个与3+2√2是相同的

那么怎么根据这个无理数极限逆推数列递推公式呢?

形如:a(n)=x*a(n-1)+y*a(n-2)+z

其实可以用求根公式逆推出二元一次函数

然后再逆推出数列递推公式系数x和y,然后再带入数列求出常数项z

这样就可以根据a(n)/a(n-1)的无理数极限逆推二阶线性递推数列公式

所以为了使用这种方法,我们还要多背几个根号的值:

√2=1.414

√3=1.732

√5=2.236

√6=2.449

√7=2.646

√10=3.162

也不要背太多,题目不会太复杂的

当然也可能求出来是整数,那么就难以确定了

即使求出来是无理数,也可能是多阶的

时间: 2024-10-29 19:12:23

根据a(n)/a(n-1)的无理数极限逆推二阶线性递推数列公式的相关文章

斐波那契数列——母牛的故事

斐波那契数列 先普及一下基础知识 1.定义 斐波那契数列,又称黄金数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*). 2.通项公式 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列.通项公式(如上,

斐波那契数列——摘自搜狗百科

1数列公式 递推公式 斐波那契数列:0.1.1.2.3.5.8.13.21.34.55.89.144... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 通项公式 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 斐波拉契数列则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2

SHUOJ1857 Yaoge鸡排系列之九——好多鸡排!!!【矩阵快速幂】

转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://202.121.199.212/JudgeOnline/problem.php?id=1857 1857: Yaoge鸡排系列之九——好多鸡排!!! Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 98  Solved: 6 Description Yaoge买了n块鸡排,其中第n块鸡排的质量为M(n),同时

算法竞赛中常见的数学(一):Fibonacci数列

最近做的题目有很多都是与Fabonacci数列有关的,身为信息组蒟蒻的我最近经常与数学组李中一大神(Orz)畅谈,其中包括Fabonacci数列的若干性质,此处做一个总结. 参考资料: <组合数学(第5版)>.<具体数学(第2版)> 正文: Fibonacci数列是形如0.1.1.2.3.5.8.13.21.34……的数列.递归形式定义为: 数列F[n]=F[n-1]+F[n-2],其中F[0]=0,F[1]=1. 当然也有这样的类Fibonacci数列,即形如: G[n]=G[n

【分享】近4000份数学学习资源免费分享给大家

一直以来喜欢收集数学类的教程资源,于是费了好大劲从万千合集站上扒拉了下来,总结归类了一下,一共有将近4000本电子书.经测试,均可免费下载,可能会弹出小广告,可不必理会之.[仅供学术学习和交流,请无用于商业用途.]另外,如有可能,还请尽量支持正版纸质书.   数学史(54)     数学史.rar 55.6 MB   数学的起源与发展.rar 4.3 MB   费马大定理—一个困惑了世间智者358年的谜.pdf 9.5 MB   通俗数学名著译丛14-无穷之旅:关于无穷大的文化史.pdf 14.

常见算法和例题

第3章  算法与程序设计模块 3.1  算    法 算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作. 常用的算法:列举了穷举搜索.递归.回溯.递推.模拟.分治.贪心.深度优先搜索.广度优先搜索等几种较为常用的算法,没有做过多的描述,一旦给出具体描述,容易使内容加深,产生严重学科取向的引导,符合教育部普通高中课程方案的特点,对于这些必需的方法和思想,关键不在于学生能不能,而在于教师是否想到,是否有过关注,引发学生对系统方法和思想的思考,重视建立编程思想,

【实数系统】 03 - 极限

1. 实数基本定理 实数的构造理论为实数及其完备性奠定了严格的基础,但为了研究分析学的方便,我们需要更符合“直觉”的结论.在这之前,先来解一些重要的概念. 对于一个基本序列,我们的直觉是它将逐渐逼近某个数,这个数一般称为数列的极限.极限的严格定义由维尔斯特拉斯(Weierstrass)给出:一个实数列\(\{x_n\}\)如果满足条件(1),则称它为收敛的(converge)或收敛于\(a\),而\(a\)称为\(\{x_n\}\)的极限(limit),记作\(\lim\limits_{n\to

取石子游戏详解

http://blog.csdn.net/pipisorry/article/details/39249337 取石子游戏是一个古老的博弈游戏,发源于中国,它是组合数学领域的一个经典问题.它有许多不同的玩法,基本上是两个玩家,玩的形式是轮流抓石子,胜利的标准是抓走了最后的石子. 玩家设定: 先取石子的是玩家A,后取石子的是玩家B. 经典的三种玩法: 一.巴什博奕(Bash Game),有1堆含n个石子,两个人轮流从这堆物品中取物,规定每次至少取1个,最多取m个.取走最后石子的人获胜. 二.尼姆博

【编程之美】斐波那契(Fibonacci)数列

斐波那契数列是一个非常美丽.和谐的数列,有人说它起源于一对繁殖力惊人.基因非常优秀的兔子,也有人说远古时期的鹦鹉就知道这个规律. 每一个学理工科的学生都知道斐波那契数列,斐波那契数列由如下递推关系式定义: F(0)=0, F(1)=1, n>1时,F(n)=F(n-1)+F(n-2). 每一个上过算法课的同学都能用递归的方法求解斐波那契数列的第n+1项的值,即F(n). 1 int Fibonacci(int n) 2 { 3 if (n <= 0) return 0; 4 else if (