#!/usr/bin/env python # -*- coding: utf-8 -*- from sklearn.feature_extraction import DictVectorizer import csv from sklearn import tree from sklearn import preprocessing from sklearn.externals.six import StringIO # Read in the csv file and put features into list of dict and list of class label allElectronicsData = open(r‘AllElectronics.csv‘, ‘rb‘) reader = csv.reader(allElectronicsData) headers = reader.next() print(headers) featureList = [] labelList = [] for row in reader: labelList.append(row[len(row)-1]) # 取得每一行最后一个值 标签 rowDict = {} #取得每一行的值 包含有字典的list for i in range(1, len(row)-1): rowDict[headers[i]] = row[i] featureList.append(rowDict) print(featureList) # Vetorize features vec = DictVectorizer()#将字典转换成00100的形式(1000) dummyX = vec.fit_transform(featureList) .toarray() print("dummyX: " + str(dummyX)) print(vec.get_feature_names()) print("labelList: " + str(labelList)) # vectorize class labels lb = preprocessing.LabelBinarizer()#将标签转换成0,1 dummyY = lb.fit_transform(labelList) print("dummyY: " + str(dummyY)) # Using decision tree for classification # clf = tree.DecisionTreeClassifier() clf = tree.DecisionTreeClassifier(criterion=‘entropy‘)#信息熵 clf = clf.fit(dummyX, dummyY) print("clf: " + str(clf)) # Visualize model with open("allElectronicInformationGainOri.dot", ‘w‘) as f: f = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f) oneRowX = dummyX[0, :] print("oneRowX: " + str(oneRowX)) newRowX = oneRowX newRowX[0] = 1 newRowX[2] = 0 print("newRowX: " + str(newRowX)) predictedY = clf.predict(newRowX) print("predictedY: " + str(predictedY))
时间: 2024-10-28 05:04:48