人体行为识别数据集

Action

UCF Sports Action Dataset
This dataset consists of a set of actions collected from various sports which are typically featured on broadcast television channels such as the BBC and ESPN. The video sequences were obtained from a wide range of stock footage websites including BBC Motion gallery, and GettyImages.
UCF Aerial Action Dataset
This dataset features video sequences that were obtained using a R/C-controlled blimp equipped with an HD camera mounted on a gimbal.The collection represents a diverse pool of actions featured at different heights and aerial viewpoints. Multiple instances of each action were recorded at different flying altitudes which ranged from 400-450 feet and were performed by different actors.
UCF YouTube Action Dataset
It contains 11 action categories collected from YouTube.
Weizmann action recognition
Walk, Run, Jump, Gallop sideways, Bend, One-hand wave, Two-hands wave, Jump in place, Jumping Jack, Skip.
UCF50
UCF50 is an action recognition dataset with 50 action categories, consisting of realistic videos taken from YouTube.
ASLAN
The Action Similarity Labeling (ASLAN) Challenge.
MSR Action Recognition Datasets
The dataset was captured by a Kinect device. There are 12 dynamic American Sign Language (ASL) gestures, and 10 people. Each person performs each gesture 2-3 times.
KTH Recognition of human actions
Contains six types of human actions (walking, jogging, running, boxing, hand waving and hand clapping) performed several times by 25 subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors with different clothes and indoors.
Hollywood-2 Human Actions and Scenes dataset
Hollywood-2 datset contains 12 classes of human actions and 10 classes of scenes distributed over 3669 video clips and approximately 20.1 hours of video in total.
Collective Activity Dataset
This dataset contains 5 different collective activities : crossing, walking, waiting, talking, and queueing and 44 short video sequences some of which were recorded by consumer hand-held digital camera with varying view point.
Olympic Sports Dataset
The Olympic Sports Dataset contains YouTube videos of athletes practicing different sports.
SDHA 2010
Surveillance-type videos
VIRAT Video Dataset
The dataset is designed to be realistic, natural and challenging for video surveillance domains in terms of its resolution, background clutter, diversity in scenes, and human activity/event categories than existing action recognition datasets.
HMDB: A Large Video Database for Human Motion Recognition
Collected from various sources, mostly from movies, and a small proportion from public databases, YouTube and Google videos. The dataset contains 6849 clips divided into 51 action categories, each containing a minimum of 101 clips.
Stanford 40 Actions Dataset
Dataset of 9,532 images of humans performing 40 different actions, annotated with bounding-boxes.
50Salads dataset
Fully annotated dataset of RGB-D video data and data from accelerometers attached to kitchen objects capturing 25 people preparing two mixed salads each (4.5h of annotated data). Annotated activities correspond to steps in the recipe and include phase (pre-/ core-/ post) and the ingredient acted upon.

Human pose/Expression

AFEW (Acted Facial Expressions In The Wild)/SFEW (Static Facial Expressions In The Wild)
Dynamic temporal facial expressions data corpus consisting of close to real world environment extracted from movies.
ETHZ CALVIN Dataset

Action Databases

  1. 50 Salads - fully annotated 4.5 hour dataset of RGB-D video + accelerometer data, capturing 25 people preparing two mixed salads each (Dundee University, Sebastian Stein)
  2. ASLAN Action similarity labeling challenge database (Orit Kliper-Gross)
  3. Berkeley MHAD: A Comprehensive Multimodal Human Action Database (Ferda Ofli)
  4. BEHAVE Interacting Person Video Data with markup (Scott Blunsden, Bob Fisher, Aroosha Laghaee)
  5. CVBASE06: annotated sports videos (Janez Pers)
  6. G3D - synchronised video, depth and skeleton data for 20 gaming actions captured with Microsoft Kinect (Victoria Bloom)
  7. Hollywood 3D - 650 3D action recognition in the wild videos, 14 action classes (Simon Hadfield)
  8. Human Actions and Scenes Dataset (Marcin Marszalek, Ivan Laptev, Cordelia Schmid)
  9. HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion (Brown University)
  10. i3DPost Multi-View Human Action Datasets (Hansung Kim)
  11. i-LIDS video event image dataset (Imagery library for intelligent detection systems) (Paul Hosner)
  12. INRIA Xmas Motion Acquisition Sequences (IXMAS) (INRIA)
  13. JPL First-Person Interaction dataset - 7 types of human activity videos taken from a first-person viewpoint (Michael S. Ryoo, JPL)
  14. KTH human action recognition database (KTH CVAP lab)
  15. LIRIS human activities dataset - 2 cameras, annotated, depth images (Christian Wolf, et al)
  16. MuHAVi - Multicamera Human Action Video Data (Hossein Ragheb)
  17. Oxford TV based human interactions (Oxford Visual Geometry Group)
  18. Rochester Activities of Daily Living Dataset (Ross Messing)
  19. SDHA Semantic Description of Human Activities 2010 contest - aerial views (Michael S. Ryoo, J. K. Aggarwal, Amit K. Roy-Chowdhury)
  20. SDHA Semantic Description of Human Activities 2010 contest - Human Interactions (Michael S. Ryoo, J. K. Aggarwal, Amit K. Roy-Chowdhury)
  21. TUM Kitchen Data Set of Everyday Manipulation Activities (Moritz Tenorth, Jan Bandouch)
  22. TV Human Interaction Dataset (Alonso Patron-Perez)
  23. Univ of Central Florida - Feature Films Action Dataset (Univ of Central Florida)
  24. Univ of Central Florida - YouTube Action Dataset (sports) (Univ of Central Florida)
  25. Univ of Central Florida - 50 Action Category Recognition in Realistic Videos (3 GB) (Kishore Reddy)
  26. UCF 101 action dataset 101 action classes, over 13k clips and 27 hours of video data (Univ of Central Florida)
  27. Univ of Central Florida - Sports Action Dataset (Univ of Central Florida)
  28. Univ of Central Florida - ARG Aerial camera, Rooftop camera and Ground camera (UCF Computer Vision Lab)
  29. UCR Videoweb Multi-camera Wide-Area Activities Dataset (Amit K. Roy-Chowdhury)
  30. Verona Social interaction dataset (Marco Cristani)
  31. Videoweb (multicamera) Activities Dataset (B. Bhanu, G. Denina, C. Ding, A. Ivers, A. Kamal, C. Ravishankar, A. Roy-Chowdhury, B. Varda)
  32. ViHASi: Virtual Human Action Silhouette Data (userID: VIHASI password: virtual$virtual) (Hossein Ragheb, Kingston University)
  33. WorkoutSU-10 Kinect dataset for exercise actions (Ceyhun Akgul)
  34. YouCook - 88 open-source YouTube cooking videos with annotations (Jason Corso)
  35. WVU Multi-view action recognition dataset (Univ. of West Virginia)
时间: 2024-10-29 19:07:37

人体行为识别数据集的相关文章

中文识别数据集生成脚本

概述 该脚本能够将用户指定的字符输出为不同字体的图像文件,用于训练文字识别的机器学习模型或用于其他文字识别OCR项目 详细 代码下载:http://www.demodashi.com/demo/13952.html 一.开发背景 随着近几年来计算机算力的不断提升,机器学习也迎来了爆发式的发展,图像识别作为机器学习最典型也是最主要的应用之一,目前应用前景火热. 机器学习最重要的一步就是获取数据集,没有一个坚实的数据集做支撑是无法训练出好用的模型的.因此,本文实现了一个脚本,能够生成任意数量,任意字

21个项目玩转深度学习:基于TensorFlow的实践详解06—人脸检测和识别——数据集

书籍:<21个项目玩转深度学习:基于TensorFlow的实践详解> 人脸检测 FDDB FDDB是UMass的数据集,被用来做人脸检测(Face Detection).这个数据集比较大,比较有挑战性.而且作者提供了程序用来评估检测结果,所以在这个数据上面比较算法也相对公平. 2845 张图片,其中包含了 5171 张人脸: 包含了各种遮挡,高难度的姿态,低分辨率以及对焦模糊的人脸: 用椭圆来标定人脸区域: 同时包括灰度图和彩色图. 人脸识别 LFW 户外标记人脸数据集LFW (Labeled

Labeled Faces in the Wild 人脸识别数据集 部分训练数据

development training set Note: images displayed are original (non-aligned/funneled) images. match pairs   mismatch pairs Aaron Peirsol, 1 Aaron Peirsol, 2   AJ Cook, 1 Marsha Thomason, 1 Aaron Peirsol, 3 Aaron Peirsol, 4   Aaron Sorkin, 2 Frank Solic

Labeled Faces in the Wild 人脸识别数据集

http://blog.csdn.net/garfielder007/article/details/51480525 New (draft) survey paper: Labeled Faces in the Wild: A SurveyErik Learned-Miller, Gary Huang, Aruni RoyChowdhury, Haoxiang Li, Gang Hua The camera-ready has not yet been submitted. If you se

SVM:利用SVM算法实现手写图片识别(数据集50000张图片)—Jason niu

import mnist_loader # Third-party libraries from sklearn import svm def svm_baseline(): training_data, validation_data, test_data = mnist_loader.load_data() # train clf = svm.SVC() clf.fit(training_data[0], training_data[1]) predictions = [int(a) for

【人体识别系统研究】网摘

摘要:人体识别系统是城市轨道交通自动售检票系统的关键组成部分.为了对人体识别系统中通行识别技术进行研究,采用对射式红外传感器采集通行目标的通行状态,在通道两侧分别安装传感器,在Matlab仿真的基础上将步态识别方法与人体识别规则相结合·分析闸机通道内通行目标的类型和数量,对其新型识别方法进行实验,实验结果表明该识别方法有效可靠.关键词:红外传感器:Matlab仿真:步态识别:人体识别 0 引言    随着社会的进步,地铁作为城市轨道交通中的重要组成部分在人们的生活中发挥着至关重要的作用.传统方式

MNIST数据集手写体识别(CNN实现)

github博客传送门 csdn博客传送门 本章所需知识: 没有基础的请观看深度学习系列视频 tensorflow Python基础 资料下载链接: 深度学习基础网络模型(mnist手写体识别数据集) MNIST数据集手写体识别(CNN实现) import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data # 导入下载数据集手写体 mnist = input_data.read

MNIST数据集手写体识别(MLP实现)

github博客传送门 csdn博客传送门 本章所需知识: 没有基础的请观看深度学习系列视频 tensorflow Python基础 资料下载链接: 深度学习基础网络模型(mnist手写体识别数据集) MNIST数据集手写体识别(MLP实现) import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data # 导入下载数据集手写体 mnist = input_data.read

MNIST数据集手写体识别(SEQ2SEQ实现)

github博客传送门 csdn博客传送门 本章所需知识: 没有基础的请观看深度学习系列视频 tensorflow Python基础 资料下载链接: 深度学习基础网络模型(mnist手写体识别数据集) MNIST数据集手写体识别(CNN实现) import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data # 导入下载数据集手写体 mnist = input_data.read