Parencodings
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 23040 | Accepted: 13501 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line
is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
题意:一个括号表达式可以按照如下的规则表示,就是每个右括号之前的左括号数。
比如(((()()()))),每个右括号之前的左括号数序列为P=4 5 6 6 6 6,而每个右括号所在的括号内包含的括号数为W=1 1 1 4 5 6.
现在给定P,输出W。
我的思路:先根据P还原整个括号表达式,存在数组中利用栈求解 #include<iostream> #include<cstdio> using namespace std; int main() { int T,n; while(cin>>T) { while(T--) { cin>>n; int a[1000]; for(int i=0; i<n; i++) cin>>a[i]; for(int i=n-1; i>=1; i--) a[i]-=a[i-1]; int num=0; int s[10001]; for(int i=0; i<n; i++) //转化格式 { for(int j=0; j<a[i]; j++) { s[num++]=0; } s[num++]=1; } int ss[10001],top=0; for(int i=0; i<num; i++) { ss[++top]=s[i]; if(s[i]==1) { int k=top; int flag=0; while(ss[k]!=0) //统计包含的括号数 { flag+=1; k--; } ss[top]=flag; for(int i=k; i<=top; i++) //每匹配一个括号则消除一个左括号的位置 { ss[i]=ss[i+1]; } top--; } } int kk=1; for(int i=1; i<=top; i++) { if(kk==1) kk=0; else <span id="transmark"></span>cout<<" "; cout<<ss[i]; } cout<<endl; } } }
版权声明:本文为博主原创文章,未经博主允许不得转载。