[暑假集训--数位dp]LightOj1032 Fast Bit Calculations

A bit is a binary digit, taking a logical value of either 1 or 0 (also referred to as "true" or "false" respectively). And every decimal number has a binary representation which is actually a series of bits. If a bit of a number is 1 and its next bit is also 1 then we can say that the number has a 1 adjacent bit. And you have to find out how many times this scenario occurs for all numbers up to N.

Examples:

Number         Binary          Adjacent Bits

12                    1100                        1

15                    1111                        3

27                    11011                      2

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case contains an integer N (0 ≤ N < 231).

Output

For each test case, print the case number and the summation of all adjacent bits from 0 to N.

Sample Input

7

0

6

15

20

21

22

2147483647

Sample Output

Case 1: 0

Case 2: 2

Case 3: 12

Case 4: 13

Case 5: 13

Case 6: 14

Case 7: 16106127360

 1 #include<cstdio>
 2 #include<iostream>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<algorithm>
 6 #include<cmath>
 7 #include<queue>
 8 #include<deque>
 9 #include<set>
10 #include<map>
11 #include<ctime>
12 #define LL long long
13 #define inf 0x7ffffff
14 #define pa pair<int,int>
15 #define mkp(a,b) make_pair(a,b)
16 #define pi 3.1415926535897932384626433832795028841971
17 using namespace std;
18 inline LL read()
19 {
20     LL x=0,f=1;char ch=getchar();
21     while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
22     while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
23     return x*f;
24 }
25 LL n,len,l,r;
26 LL f[50][2][50];
27 int d[110];
28 int zhan[50],top;
29 inline LL dfs(int now,int dat,int tot,int fp)
30 {
31     if (now==1)return tot;
32     if (!fp&&f[now][dat][tot]!=-1)return f[now][dat][tot];
33     LL ans=0,mx=fp?d[now-1]:1;
34     for (int i=0;i<=mx;i++)
35     {
36         if (i==0)ans+=dfs(now-1,0,tot,fp&&i==d[now-1]);
37         else ans+=dfs(now-1,1,tot+(dat==1),fp&&i==d[now-1]);
38     }
39     if (!fp)f[now][dat][tot]=ans;
40     return ans;
41 }
42 inline LL calc(LL x)
43 {
44     if (x<=0)return 0;
45     LL xxx=x;
46     len=0;
47     while (xxx)
48     {
49         d[++len]=xxx%2;
50         xxx/=2;
51     }
52     LL sum=0;
53     for (int i=0;i<=d[len];i++)sum+=dfs(len,i,0,i==d[len]);
54     return sum;
55 }
56 main()
57 {
58     int T=read(),cnt=0;
59     while (T--)
60     {
61         r=read();
62         if (r<l)swap(l,r);
63         memset(f,-1,sizeof(f));
64         printf("Case %d: %lld\n",++cnt,calc(r));
65     }
66 }

LightOj 1032

时间: 2024-11-26 12:07:07

[暑假集训--数位dp]LightOj1032 Fast Bit Calculations的相关文章

[暑假集训--数位dp]hdu3652 B-number

A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb

[暑假集训--数位dp]LightOj1205 Palindromic Numbers

A palindromic number or numeral palindrome is a 'symmetrical' number like 16461 that remains the same when its digits are reversed. In this problem you will be given two integers i j, you have to find the number of palindromic numbers between i and j

[暑假集训--数位dp]hdu5898 odd-even number

For a number,if the length of continuous odd digits is even and the length of continuous even digits is odd,we call it odd-even number.Now we want to know the amount of odd-even number between L,R(1<=L<=R<= 9*10^18). Input First line a t,then t c

[暑假集训--数位dp]cf55D Beautiful numbers

Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful num

[暑假集训--数位dp]LightOJ1140 How Many Zeroes?

Jimmy writes down the decimal representations of all natural numbers between and including m and n, (m ≤ n). How many zeroes will he write down? Input Input starts with an integer T (≤ 11000), denoting the number of test cases. Each case contains two

[暑假集训--数位dp]hdu5787 K-wolf Number

Alice thinks an integer x is a K-wolf number, if every K adjacent digits in decimal representation of x is pairwised different. Given (L,R,K), please count how many K-wolf numbers in range of L,RL,R . Input The input contains multiple test cases. The

[暑假集训--数位dp]UESTC250 windy数

windy定义了一种windy数. 不含前导零且相邻两个数字之差至少为22 的正整数被称为windy数. windy想知道,在AA 和BB 之间,包括AA 和BB ,总共有多少个windy数? Input 包含两个整数,AA BB . 满足 1≤A≤B≤20000000001≤A≤B≤2000000000 . OutputSample Input 1 10 Sample Output 9 记一下上一位出现的数是啥 1 #include<cstdio> 2 #include<iostrea

LightOJ-1032 - Fast Bit Calculations

实验平台: redhat 6    以安装 安装步骤: (1):在网上找到自己想要的交叉工具链安装包 (2):解压自己的安装包   ; tar -xzvf arm-linux-gcc-4.3.2.tar.gz   -C /     解压到或目录 或tar  -xjvf   arm-linux-gcc-3.4.5.tar.bz2   -C / 在解压的过程中我们可以看到,其可执行程序,被解压到/usr/local/arm/3.4.5/bin, (4):修改配置文件 vim  /etc/profil

LightOJ1032 Fast Bit Calculations(数位DP)

显然数位DP. dp[i][j]表示所有末尾为j的i位二进制数相邻位的数量和 初始状态dp[2][1]=1 从长度i-1转移到长度i就是在i-1位的末尾添上0或1,转移方程就是: dp[i][0]=dp[i-1][0]+dp[i-1][1] dp[i][1]=dp[i-1][0]+dp[i-1][1]+2i-2 预处理完后,就可以通过这个计算出[0,n]区间的数量和,还是感觉数位DP的这一步挺棘手的,具体问题具体分析吧.. 1 #include<cstdio> 2 #include<cs