统计学习方法[6]——逻辑回归模型

统计学习方法由三个要素组成:方法=模型+策略+算法

模型是针对具体的问题做的假设空间,是学习算法要求解的参数空间。例如模型可以是线性函数等。

策略是学习算法学习的目标,不同的问题可以有不同的学习目标,例如经验风险最小化或者结构风险最小化。

经验风险最小化中常见的损失函数有:0-1损失函数、残差损失函数、绝对值损失函数、平方损失函数、对数损失函数等等。

算法是按照上述策略求解模型的具体计算方法。模型定义了要求什么,策略定义了按照什么标准去求,算法则具体去解决。



线性回归模型

线性回归模型,众所周知就是给定给定训练集(Xi,Yi),模拟一个一次线性函数Y‘=∑ΘiXi(模型),使得误差J(Y,Y‘)尽可能最小(策略)。

如果要用线性回归问题解决分类问题的话,需要将线性回归函数转换成0-1分布的函数,逻辑斯蒂函数就是这样一个函数,可以将值映射为区间(0,1)上,同时又能很好的表示概率意义。

那么如何求解参数使损失函数最小呢?

当然可以用暴力搜索所有的参数值Θ,但是效率肯定很低,所以用有目标的(启发式)搜索算法代替暴力搜索。这里的目标就是上述损失函数最小策略。

假设空间参数是经验风险的函数!举个例子,对于

如果Θ0 一直为 0, 则Θ1与J的函数为:

如果有Θ0与Θ1都不固定,则Θ0、Θ1、J 的函数为:

梯度下降法

大致步骤如下:

1、随机初始化参数Θ,并给定一个学习速率α(下降的步长)

2、求解目标函数(损失函数)相对于各个参数分量Θi的偏导数

3、循环同步迭代Θi直到达到终止条件(迭代次数或者一个误差值)

问题:怎么取α值?

答:随时观察α值,如果cost function变小了,则ok,反之,则再取一个更小的值。

下图就详细的说明了梯度下降的过程:

另外需要注意的是梯度下降法求解的是局部最优解(除非损失函数是凸的),跟初始点由很大的关系,可以多次取不同初始值求解后取最优值。

时间: 2025-01-01 14:33:43

统计学习方法[6]——逻辑回归模型的相关文章

《统计学习方法》-逻辑回归笔记和python源码

逻辑回归(Logistic regression) 逻辑回归是统计学习中的经典分类方法.其多用在二分类{0,1}问题上. 定义1: 设X是连续随机变量,X服从逻辑回归分布是指X具有下列分布函数与密度函数: 分布函数属于逻辑斯谛函数,其图形是一条S形曲线. 定义2: 二项逻辑斯谛回归模型是如下条件概率分布: 从上式可以看出,逻辑回归对线性回归经行了归一化操作,将输出范围规定在{0,1}. 现在来看,逻辑回归的的特点,几率,指一件事件发生的概率与不发生的概率的比值.对上式分别求对数,我们可得如下式子

统计学习方法五 逻辑回归分类

逻辑回归分类 1,概念 2,算法流程 3,多分类逻辑回归 4,逻辑回归总结 优点: 1)预测结果是界于0和1之间的概率: 2)可以适用于连续性和类别性自变量: 3)容易使用和解释: 缺点: 1)对模型中自变量多重共线性较为敏感,例如两个高度相关自变量同时放入模型,可能导致较弱的一个自变量回归符号不符合预期,符号被扭转.?需要利用因子分析或者变量聚类分析等手段来选择代表性的自变量,以减少候选变量之间的相关性: 2)预测结果呈"S"型,因此从log(odds)向概率转化的过程是非线性的,在

逻辑回归模型预测股票涨跌

http://www.cnblogs.com/lafengdatascientist/p/5567038.html 逻辑回归模型预测股票涨跌 逻辑回归是一个分类器,其基本思想可以概括为:对于一个二分类(0~1)问题,若P(Y=1/X)>0.5则归为1类,若P(Y=1/X)<0.5,则归为0类. 一.模型概述 1.Sigmoid函数 为了具象化前文的基本思想,这里介绍Sigmoid函数: 函数图像如下: 红色的线条,即x=0处将Sigmoid曲线分成了两部分:当 x < 0,y <

机器学习之——判定边界和逻辑回归模型的代价函数

判定边界(Decision Boundary) 上一次我们讨论了一个新的模型--逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测: 当h?大于等于0.5时,预测y=1 当h?小于0.5时,预测y=0 根据上面的预测,我们绘制出一条S形函数,如下: 根据函数图像,我们知道,当 z=0时,g(z)=0.5 z>0时,g(z)>0.5 z<0时,g(z)<0.5 又有: 所以 以上,为我们预知的逻辑回归的部分内容.好,现在假设我们有一个模型: 并且参数?是向

逻辑回归模型(Logistic Regression)及Python实现

逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑

逻辑回归模型梯度下降法跟牛顿法比较

1.综述 机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.梯度下降的目的是直接求解目标函数极小值,而牛顿法则变相地通过求解目标函数一阶导为零的参数值,进而求得目标函数最小值.在逻辑回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法. 2 梯度下降法 2.1算法描述 1.确定误差范围和下降的步长,确定函数的导函数 2.while(|新值 -旧值| >误差) 3.       旧值=新值 4.       新值=初始值-步长*导函数

Python之逻辑回归模型来预测

建立一个逻辑回归模型来预测一个学生是否被录取. import numpy as np import pandas as pd import matplotlib.pyplot as plt import os path='data'+os.sep+'Logireg_data.txt' pdData=pd.read_csv(path,header=None,names=['Exam1','Exam2','Admitted']) pdData.head() print(pdData.head())

基于分类问题的逻辑回归模型

由于分类问题的输出是0.1这样的离散值,因而回归问题中用到的线性回归模型就不再适用了.对于分类问题,我们建立逻辑回归模型. 针对逻辑回归模型,主要围绕以下几点来讨论. Logistic Regression (逻辑回归) Sigmoid Function (逻辑函数) Decision Boundaries (决策边界) Cost Function (代价函数) 决策边界不是数据集的属性,而是假设本身及其参数的属性.我们不是用训练集来定义的决策边界,我们用训练集来拟合参数θ,一旦有了参数θ就可以

逻辑回归模型分析

本文主要分两个部分进行讨论,首先介绍最简单的线性回归模型:接着对逻辑回归进行分析 1.线性回归-->最小二乘法 对于线性回归问题,我们根据自变量的个数将其分为一元线性回归和多元线性回归,本部分先详细介绍一元线性模型,然后将其推广到多元线性模型 1)一元线性模型 当输入只有一个自变量时,我们称之为一元线性模型.(最简单) 设样本集合为:(xi,yi),i=1,2,…,m. 目标为:在平面上找出一条线,使得样本点尽可能多的在这条直线上. 设一元线性模型为:h(x)=ax+b,输出误差为:Si=yi-