异常检测算法--Isolation Forest

  南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结。

iTree

  提到森林,自然少不了树,毕竟森林都是由树构成的,看Isolation Forest(简称iForest)前,我们先来看看Isolation Tree(简称iTree)是怎么构成的,iTree是一种随机二叉树,每个节点要么有两个女儿,要么就是叶子节点,一个孩子都没有。给定一堆数据集D,这里D的所有属性都是连续型的变量,iTree的构成过程如下:

  •   随机选择一个属性Attr;
  •   随机选择该属性的一个值Value;
  •   根据Attr对每条记录进行分类,把Attr小于Value的记录放在左女儿,把大于等于Value的记录放在右孩子;
  •   然后递归的构造左女儿和右女儿,直到满足以下条件:
  •     传入的数据集只有一条记录或者多条一样的记录;
  •     树的高度达到了限定高度;

  

  iTree构建好了后,就可以对数据进行预测啦,预测的过程就是把测试记录在iTree上走一下,看测试记录落在哪个叶子节点。iTree能有效检测异常的假设是:异常点一般都是非常稀有的,在iTree中会很快被划分到叶子节点,因此可以用叶子节点到根节点的路径h(x)长度来判断一条记录x是否是异常点;对于一个包含n条记录的数据集,其构造的树的高度最小值为log(n),最大值为n-1,论文提到说用log(n)和n-1归一化不能保证有界和不方便比较,用一个稍微复杂一点的归一化公式:$$s(x,n) = 2^{(-\frac{h(x)}{c(n)})}$$,$$ c(n) = 2H(n − 1) − (2(n − 1)/n), 其中 H(k) = ln(k) + \xi,\xi为欧拉常数$$

  $s(x,n)$就是记录x在由n个样本的训练数据构成的iTree的异常指数,$s(x,n)$取值范围为[0,1],越接近1表示是异常点的可能性高,越接近0表示是正常点的可能性比较高,如果大部分的训练样本的s(x,n)都接近于0.5,说明整个数据集都没有明显的异常值。

  随机选属性,随机选属性值,一棵树这么随便搞肯定是不靠谱,但是把多棵树结合起来就变强大了;

iForest

  iTree搞明白了,我们现在来看看iForest是怎么构造的,给定一个包含n条记录的数据集D,如何构造一个iForest。iForest和Random Forest的方法有些类似,都是随机采样一一部分数据集去构造每一棵树,保证不同树之间的差异性,不过iForest与RF不同,采样的数据量$Psi$不需要等于n,可以远远小于n,论文中提到采样大小超过256效果就提升不大了,明确越大还会造成计算时间的上的浪费,为什么不像其他算法一样,数据越多效果越好呢,可以看看下面这两个个图,

  左边是元素数据,右边是采样了数据,蓝色是正常样本,红色是异常样本。可以看到,在采样之前,正常样本和异常样本出现重叠,因此很难分开,但我们采样之和,异常样本和正常样本可以明显的分开。

  除了限制采样大小以外,还要给每棵iTree设置最大高度$l=ceiling(log_2^\Psi)$,这是因为异常数据记录都比较少,其路径长度也比较低,而我们也只需要把正常记录和异常记录区分开来,因此只需要关心低于平均高度的部分就好,这样算法效率更高,不过这样调整了后,后面可以看到计算$h(x)$需要一点点改进,先看iForest的伪代码:

  IForest构造好后,对测试进行预测时,需要进行综合每棵树的结果,于是$$s(x,n) = 2^{(-\frac{E(h(x))}{c(n)})}$$

  $E(h(x))$表示记录x在每棵树的高度均值,另外h(x)计算需要改进,在生成叶节点时,算法记录了叶节点包含的记录数量,这时候要用这个数量$Size$估计一下平均高度,h(x)的计算方法如下:

处理高维数据

  在处理高维数据时,可以对算法进行改进,采样之后并不是把所有的属性都用上,而是用峰度系数Kurtosis挑选一些有价值的属性,再进行iTree的构造,这跟随机森林就更像了,随机选记录,再随机选属性。

只使用正常样本

  这个算法本质上是一个无监督学习,不需要数据的类标,有时候异常数据太少了,少到我们只舍得拿这几个异常样本进行测试,不能进行训练,论文提到只用正常样本构建IForest也是可行的,效果有降低,但也还不错,并可以通过适当调整采样大小来提高效果。

  全文完,转载请注明出处:http://www.cnblogs.com/fengfenggirl/p/iForest.html

时间: 2024-10-06 11:59:01

异常检测算法--Isolation Forest的相关文章

【异常检测】Isolation forest 的spark 分布式实现

1.算法简介 算法的原始论文 http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf .python的sklearn中已经实现了相关的api,对于单机的数据已经足够使用了,链接如下 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html .如果你想探究分布式下该算法怎么实现,下面细看. 按照惯例先讲一下算法

如何开发一个异常检测系统:如何评价一个异常检测算法

利用数值来评价一个异常检测算法的重要性 使用实数评价法很重要,当你用某个算法来开发一个具体的机器学习应用时,你常常需要做出很多决定,如选择什么样的特征等等,如果你能找到如何来评价算法,直接返回一个实数来告诉你算法的好坏,那样你做决定就会更容易一些.如现在有一个特征,要不要将这个特征考虑进来?如果你带上这个特征运行你的算法,再去掉这个特征运行你的算法,得到返回的实数,这个实数直接告诉你加上这个特征算法是变好了还是变坏了,这样你就有一种更简单的算法来确定是否要加上这个特征. 为了更快地开发出一个异常

异常检测算法的Octave仿真

在基于高斯分布的异常检测算法一文中,详细给出了异常检测算法的原理及其公式,本文为该算法的Octave仿真.实例为,根据训练样例(一组网络服务器)的吞吐量(Throughput)和延迟时间(Latency)数据,标记出异常的服务器. 可视化的数据集如下: 我们根据数据集X,计算其二维高斯分布的数学期望mu与方差sigma2: function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estimates th

《时序异常检测算法概览》

时序异常检测算法概览 2018-09-03 17:08:49 分类:人工智能与大数据 来自:论智(微信号:jqr_AI),作者:Pavel Tiunov,编译:weakish来源:statsbot,原文链接 编者按:Statsbot CTO Pavel Tiunov简要介绍了最流行的时序异常检测算法,并讨论了它们的优点和缺点 在Statsbot,我们持续检查异常检测方法这一领域的研究,并据此更新我们的模型. 本文概览了最流行的时序异常检测算法,并讨论了它们的优点和缺点. 本文是为想要了解异常检测

机器学习总结2 - 关于激活函数、损失函数、正则化、异常检测算法总结

LSTM特性, CNN特性, 损失函数, paper, 项目 ...软件 激活函数: -> sigmod: 硬饱和性, y(0,1), 斜率趋于0;-> tanh: 软饱和性, y(-1,1), 虽然输出均值为0, 可以更快收敛, 但斜率依然会趋于0;-> relu: 当x<0时, 存在硬饱和, y(0, +), 使用leak-relu, 当x<0时, 使斜率不会为0; 损失函数/ 性能指标:-> 均方差mse, 均方根误差rmse, 常用于回归问题, rmse=500

Spark实战3:异常检测算法Scala语言

异常检测原理是根据训练数据的高斯分布,计算均值和方差,若测试数据样本点带入高斯公式计算的概率低于某个阈值(0.1),判定为异常点. 1 创建数据集转化工具类,把csv数据集转化为RDD数据结构 import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.rdd.RDD object Featu

异常检测(Anomaly detection): 异常检测算法(应用高斯分布)

估计P(x)的分布--密度估计 我们有m个样本,每个样本有n个特征值,每个特征都分别服从不同的高斯分布,上图中的公式是在假设每个特征都独立的情况下,实际无论每个特征是否独立,这个公式的效果都不错.连乘的公式表达如上图所示. 估计p(x)的分布问题被称为密度估计问题(density estimation)

孤立森林(Isolation Forest)

前言随着机器学习近年来的流行,尤其是深度学习的火热.机器学习算法在很多领域的应用越来越普遍.最近,我在一家广告公司做广告点击反作弊算法研究工作.想到了异常检测算法,并且上网调研发现有一个算法非常火爆,那就是本文要介绍的算法 Isolation Forest,简称 iForest . 南大周志华老师的团队在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. 1. iTree的构造提到森林

Isolation Forest算法实现详解

本文介绍的 Isolation Forest 算法原理请参看我的博客:Isolation Forest异常检测算法原理详解,本文中我们只介绍详细的代码实现过程. 1.ITree的设计与实现 首先,我们参看原论文中的ITree的构造伪代码: 这里写图片描述 1.1 设计ITree类的数据结构 由原论文[1,2]以及上述伪代码可知,ITree是一个二叉树,并且构建ITree的算法采用的是递归构建.同时构造的结束条件是: 当前节点的高度超过了算法设置的阈值 l ;当前子树只包含一个叶节点:当前子树的所