梯度下降和EM算法,kmeans的em推导

I. 牛顿迭代法
给定一个复杂的非线性函数f(x),希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足f′(x0)=0,然后可以转化为求方程f′(x)=0的根了。非线性方程的根我们有个牛顿法,所以

然而,这种做法脱离了几何意义,不能让我们窥探到更多的秘密。我们宁可使用如下的思路:在y=f(x)的x=xn这一点处,我们可以用一条近似的曲线来逼近原函数,如果近似的曲线容易求最小值,那么我们就可以用这个近似的曲线求得的最小值,来近似代替原来曲线的最小值了:

显然,对近似曲线的要求是:
1、跟真实曲线在某种程度上近似,一般而言,要求至少具有一阶的近似度;
2、要有极小值点,并且极小值点容易求解。

这样,我们很自然可以选择“切抛物线”来近似:

该抛物线具有二阶的精度。对于这条抛物线来说,极值点是

所以我们重新得到了牛顿法的迭代公式:

如果f(x)足够光滑并且在全局只有一个极值点,那么牛顿法将会是快速收敛的(速度指数增长),然而真实的函数并没有这么理想,因此,它的缺点就暴露出来了:

1、需要求二阶导数,有些函数求二阶导数之后就相当复杂了;
2、因为f″(xn)的大小不定,所以g(x)开口方向不定,我们无法确定最后得到的结果究竟是极大值还是极小值。

II. 梯度下降

这两个缺点在很多问题上都是致命性的,因此,为了解决这两个问题,我们放弃二阶精度,即去掉f″(xn),改为一个固定的正数1/h:

这条近似曲线只有一阶精度,但是同时也去掉了二阶导数的计算,并且保证了这是一条开口向上的抛物线,因此,通过它来迭代,至少可以保证最后会收敛到一个极小值(至少是局部最小值)。上述g(x)的最小值点为

所以我们得到迭代公式

对于高维空间就是

这就是著名的梯度下降法了。当然,它本身存在很多问题,但很多改进的算法都是围绕着它来展开,如随机梯度下降等等。

这里我们将梯度下降法理解为近似抛物线来逼近得到的结果,既然这样子看,读者应该也会想到,凭啥我一定要用抛物线来逼近,用其他曲线来逼近不可以吗?当然可以,对于很多问题来说,梯度下降法还有可能把问题复杂化,也就是说,抛物线失效了,这时候我们就要考虑其他形式的逼近了。事实上,其他逼近方案,基本都被称为EM算法,恰好就只排除掉了系出同源的梯度下降法,实在让人不解。

V. K-Means

K-Means聚类很容易理解,就是已知N个点的坐标xi,i=1,…,N,然后想办法将这堆点分为K类,每个类有一个聚类中心cj,j=1,…,K,很自然地,一个点所属的类别,就是跟它最近的那个聚类中心cj所代表的类别,这里的距离定义为欧式距离。
所以,K-Means聚类的主要任务就是求聚类中心cj。我们当然希望每个聚类中心正好就在类别的“中心”了,用函数来表示出来,就是希望下述函数L最小:

其中,min操作保证了每个点只属于离它最近的那一类。
如果直接用梯度下降法优化L,那么将会遇到很大困难,不过这倒不是因为min操作难以求导,而是因为这是一个NP的问题,理论收敛时间随着N成指数增长。这时我们也是用EM算法的,这时候EM算法表现为:
1、随机选K个点作为初始聚类中心;
2、已知K个聚类中心的前提下,算出各个点分别属于哪一类,然后用同一类的所有点的平均坐标,来作为新的聚类中心。

这种方法迭代几次基本就能够收敛了,那么,这样做的理由又在哪儿呢?

我们依旧是近似曲线逼近的思路,但问题是,现在的min不可导怎么办呢?可以考虑用光滑近似,然后再取极限,答案在这里:《寻求一个光滑的最大值函数》。取一个足够大的M,那么就可以认为(最小值等于相反数的最大值的相反数)

目标函数:

梯度:

设第n次迭代的结果为$c_j^{n}$,那么该轮的梯度就是:

根据这个式子的特点,我们可以寻找这样的近似曲线(应该是超曲面了):

其中$C_{i,j}^{n}$待定,它在每一轮都是一个常数,所以这只是一个二次函数,不难求得它的最小值点是

即xi的加权平均。
同样地,我们希望它这个近似曲线跟原函数比,至少具有一阶近似,因此我们求它的导数:

对比原函数的导数,不难得到

这时候我们就得到迭代公式:

至此,我们对各个步骤都推导完毕,但我们还是使用连续近似,最后我们要取M→∞的极限了,取极限后问题可以化简。由上式可以推得:

说白了,将$Δ_{i,j}^{n}$看成是N行K列的矩阵,那么矩阵的每一行只能有一个1,其它都是0;如果第i行中是第j个元素为1,就意味着距离xi最近的类别中心为cj。这时候,迭代公式变为

根据$Δ_{i,j}^{n}$的含义,这无外乎就是说:$c_j^{(n+1)}$就是距离$c_j^{n}$最近的那些点的平均值。

这就得到了通常我们在求解K-Means问题时,所用的迭代算法了,它也被称为EM算法。

转自:

http://spaces.ac.cn/archives/4277/

时间: 2024-07-30 13:48:50

梯度下降和EM算法,kmeans的em推导的相关文章

【转载】(EM算法)The EM Algorithm

(EM算法)The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那么称f

EM算法的基本原理和推导

参考: 从最大似然到EM算法浅解 (EM算法)The EM Algorithm EM算法的九层境界:Hinton和Jordan理解的EM算法 在EM算法的证明中,其实比较好理解,总结如下: 从最大似然估计出发 ====>  将隐变量暴露出来,写出累加/积分的 形式 ===> 引入Q(z),表示隐变量z的概率密度函数 ==> 对于log函数,利用 Jensen不等式的变形:  f(E(x)  >= E(f(x)),得到最大似然函数的下界 ===> 对于log函数的Jenson不

(二)深入梯度下降(Gradient Descent)算法

一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainSet,{(1,1),(2,2),(3,3)}通过手动寻找来找到最优解,由图可见当θ1取1时,与y(i)完全重合,J(θ1) = 0 下面是θ1的取值与对应的J(θ1)变化情况 由此可见,最优解即为0,现在来看通过梯度下降

神经网络基础-梯度下降和BP算法

https://blog.csdn.net/weixin_38206214/article/details/81143894 在深度学习的路上,从头开始了解一下各项技术.本人是DL小白,连续记录我自己看的一些东西,大家可以互相交流.本文参考:本文参考吴恩达老师的Coursera深度学习课程,很棒的课,推荐 本文默认你已经大致了解深度学习的简单概念,如果需要更简单的例子,可以参考吴恩达老师的入门课程:http://study.163.com/courses-search?keyword=%E5%9

从最大似然到EM算法浅解

原文在这里 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学

转载:EM算法的最精辟讲解

机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比

混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 主要内容: 1. 概率论预备知识 2. 单高斯模型 3. 混合高斯模型 4. EM算法 5. K-means聚类算法 一.概率论预备知识 1. 数学期望/均值.方差/标准差 设离散型随机变量X的分布律为 则称为X的数学期望或均值 设连续型随机变量X的概率密度函数(pdf)为 则其数学期望定义为: 随机变量X的方差: 随机变量X的标准差: 2. 正态分布.协方差 正态分布: 概率密度函数: 设(X,Y)为二维随机变量,若存在,则

深度解读最流行的优化算法:梯度下降

深度解读最流行的优化算法:梯度下降 By 机器之心2016年11月21日 15:08 梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法.本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法.我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战.(本文的中文版 PDF 下载地址) 目录: 梯度下降的各种变体 批量梯度下降(Batch gradient descent)

统计学习方法 李航---第9章 EM算法及其推广

第9章 EM算法及其推广 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法. 9.1  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( c

EM算法(二)-算法初探

一.EM算法简介 在EM算法之一--问题引出中我们介绍了硬币的问题,给出了模型的目标函数,提到了这种含隐变量的极大似然估计要用EM算法解决,继而罗列了EM算法的简单过程,当然最后看到EM算法时内心是懵圈的,我们也简要的分析了一下,那回过头来,重新看下EM算法的简单介绍: 输入:观测变量数据Y,隐变量数据Z,联合分布$P(Y,Z|\theta)$,条件分布$P(Z|Y,\theta)$ 输出:模型参数$\theta$ (1)选择参数初值$\theta^{(0)}$,进行迭代: (2)E步:记$\t