一.特征抽取
特征抽取sklearn.feature_extraction 模块提供了从原始数据如文本,图像等众抽取能够被机器学习算法直接处理的特征向量。
1.特征抽取方法之 Loading Features from Dicts
measurements=[ {‘city‘:‘Dubai‘,‘temperature‘:33.}, {‘city‘:‘London‘,‘temperature‘:12.}, {‘city‘:‘San Fransisco‘,‘temperature‘:18.}, ] from sklearn.feature_extraction import DictVectorizer vec=DictVectorizer() print(vec.fit_transform(measurements).toarray()) print(vec.get_feature_names()) #[[ 1. 0. 0. 33.] #[ 0. 1. 0. 12.] #[ 0. 0. 1. 18.]] #[‘city=Dubai‘, ‘city=London‘, ‘city=San Fransisco‘, ‘temperature‘]
2.特征抽取方法之 Features hashing
2.特征抽取方法之 Text Feature Extraction
词袋模型 the bag of words represenatation
#词袋模型 from sklearn.feature_extraction.text import CountVectorizer #查看默认的参数 vectorizer=CountVectorizer(min_df=1) print(vectorizer) """ CountVectorizer(analyzer=‘word‘, binary=False, decode_error=‘strict‘, dtype=<class ‘numpy.int64‘>, encoding=‘utf-8‘, input=‘content‘, lowercase=True, max_df=1.0, max_features=None, min_df=1, ngram_range=(1, 1), preprocessor=None, stop_words=None, strip_accents=None, token_pattern=‘(?u)\\b\\w\\w+\\b‘, tokenizer=None, vocabulary=None) """ corpus=["this is the first document.", "this is the second second document.", "and the third one.", "Is this the first document?"] x=vectorizer.fit_transform(corpus) print(x) """ (0, 1) 1 (0, 2) 1 (0, 6) 1 (0, 3) 1 (0, 8) 1 (1, 5) 2 (1, 1) 1 (1, 6) 1 (1, 3) 1 (1, 8) 1 (2, 4) 1 (2, 7) 1 (2, 0) 1 (2, 6) 1 (3, 1) 1 (3, 2) 1 (3, 6) 1 (3, 3) 1 (3, 8) 1 """
时间: 2024-10-25 20:32:55