[51nod1079]中国剩余定理

解题关键:注意爆long long

$x \equiv {M_1}M_1^{ - 1}{a_1} + ... + {M_k}M_k^{ - 1}{a_k}(\bmod m)$

其中,$m = \prod\limits_{j = 1}^k {{m_j}}$,$\forall 1 \le j \le k$,${M_j} = \frac{m}{{{m_j}}}$,$M_j^{ - 1}$是满足${M_j}M_j^{ - 1} \equiv 1(\bmod m)$的一个整数

复杂度$O(n\log n)$

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 ll a[100],b[100];
 5 ll x,y;
 6 ll extgcd(ll a,ll b,ll &x,ll &y){
 7     int d=a;
 8     if(b){
 9         d=extgcd(b,a%b,y,x);
10         y-=a/b*x;
11     }else{
12         x=1,y=0;
13     }
14     return d;
15 }
16 int main(){
17     ll n,m=1;
18     ll ans=0;
19     cin>>n;
20     for(int i=0;i<n;i++){ cin>>b[i]>>a[i];m*=b[i];}
21     for(int i=0;i<n;i++){
22         ll mi=m/b[i];
23         extgcd(mi,b[i],x,y);
24         x=(x+b[i])%b[i];
25         ans=(ans+mi*x*a[i]+m)%m;
26     }
27     cout<<ans<<endl;
28     return 0;
29 }
时间: 2024-11-08 22:51:36

[51nod1079]中国剩余定理的相关文章

51nod1079中国剩余定理

/** *中国剩余定理 */ #include<iostream> #include<cstdio> #include<map> #include<cstring> #include<string> #include<algorithm> #include<queue> #include<vector> #include<stack> #include<cstdlib> #include

数论E - Biorhythms(中国剩余定理,一水)

E - Biorhythms Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the

gcd,扩展欧几里得,中国剩余定理

1.gcd: int gcd(int a,int b){ return b==0?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少. 输入样例: 1 10 2 3 1 2 3 2 3 5 8 1 2 3 4 5 6 7 8 97 89 67 61 59 53 47 88 12 1 2 3 4 5 6 7 8 9

HDU 1573 X问题 中国剩余定理

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题意:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i], - (0 < a[i] <= 10). 思路:中国剩余定理的模板题,如果找不到这样的数或者最小的X大于N,输出零. 代码: #include <iostream> #include

同余 模算术 中国剩余定理

相关知识点: 1.a≡b(modc),a,b关于模c同余  ,即a modc=b mod c , 等价于a%c=b 2.如果a,b互质(a,b)=1,则可得a关于模b的逆 ax≡1(modb) 3.关于余数的定理: 定理1 :如果被除数加上(或减去)除数的整数倍,除数不变,则余数不变. 定理2 :如果被除数扩大(或缩小)几倍,除数不变,则余数也扩大(或缩小)同样的倍数. 定理3: 如果整数a除以自然数b(b≠0),余数r仍不小于b,则r除以b的余数等于a除以b所得余数.(余数和被除数关于除数同余

hihocode 九十七周 中国剩余定理

题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军韩信带领1500名士兵经历了一场战斗,战死四百余人.韩信为了清点人数让士兵站成三人一排,多出来两人:站成五人一排,多出来四人:站成七人一排,多出来六人.韩信立刻就知道了剩余人数为1049人. 小Hi:韩信点兵嘛,这个故事很有名的. 小Ho:我觉得这里面一定有什么巧妙的计算方法!不然韩信不可能这么快计

POJ 1006 中国剩余定理

[题意]: 给定p,e,i,d,求解 (x + d) % 23 = p (x + d) % 28 = e(x + d) % 33 = i x最小正整数值 [知识点]: 中国剩余定理 [题解]: 典型的 xmodmi = ai模型,其中mi间两两互素.但该题式子较少,也可以直接自己化简带入值. [代码]: 1 #include <map> 2 #include <set> 3 #include <cmath> 4 #include <ctime> 5 #inc

【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理

题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小C只需要让你求出路径数mod P的值. 输入 第一行,四个整数N.M.T.P. 接下来的T行,每行两个整数,表示施工的路口的坐标. 输出 一

转载----POJ 1006 中国剩余定理

本文为转载,源地址:   http://blog.csdn.net/dongfengkuayue/article/details/6461298 POJ 1006   Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78980   Accepted: 23740 Description Some people believe that there are three cycles in a perso