上一篇说了HDFSEventSink的实现,这里根据hdfs sink的配置和调用分析来看下sink中整个hdfs数据写入的过程:
线上hdfs sink的几个重要设置
hdfs.path = hdfs://xxxxx/%{logtypename}/%Y%m%d/%H: hdfs.rollInterval = 60 hdfs.rollSize = 0 //想让文件只根据实际来roll hdfs.rollCount = 0 hdfs.batchSize = 2000 hdfs.txnEventMax = 2000 hdfs.fileType = DataStream hdfs.writeFormat = Text
这里说下和类相关的hdfs.fileType和hdfs.writeFormat,一个定义了文件流式用的类,一个定义了具体的数据序列化的类.
1)hdfs.fileType 有3个可选项:SequenceFile/DataStream/CompressedStream,DataStream可以想象成hdfs的textfile,默认是SequenceFileType,CompressedStream是用于压缩时设置
2)hdfs.writeFormat 定义了3种序列化方法,TEXT只写Event的body部分,HEADER_AND_TEXT写Event的body和header,AVRO_EVENT是avro的序列化方式
上面的设置,其数据写入流程大概如下:
SinkRunner.process->SinkProcessor.process->HDFSEventSink.process->HDFSEventSink.append->BucketWriter.append->HDFSWriter.append->HDFSDataStream.append->BodyTextEventSerializer.write->java.io.OutputStream.write
简单说下:
在HDFSEventSink中会实例化BucketWriter和HDFSWriter:
if (bucketWriter == null) { HDFSWriter hdfsWriter = writerFactory.getWriter(fileType ); //获取HDFSWriter 对象 .... bucketWriter = new BucketWriter(rollInterval , rollSize , rollCount , batchSize, context , realPath, realName, inUsePrefix, inUseSuffix, suffix, codeC, compType, hdfsWriter, timedRollerPool, proxyTicket, sinkCounter , idleTimeout , idleCallback, lookupPath); //根据HDFSWriter 对象获取BucketWriter对象
这里获取HDFSWriter 对象时用到了org.apache.flume.sink.hdfs.HDFSWriterFactory的getWriter方法,根据hdfs.fileType的设置会返回具体的org.apache.flume.sink.hdfs.HDFSWriter实现类的对象
目前只支持3种
static final String SequenceFileType = "SequenceFile" ; static final String DataStreamType = "DataStream" ; static final String CompStreamType = "CompressedStream" ; .... public HDFSWriter getWriter(String fileType) throws IOException { if (fileType.equalsIgnoreCase( SequenceFileType)) { //SequenceFile,sequencefile return new HDFSSequenceFile(); } else if (fileType.equalsIgnoreCase(DataStreamType)) { //DataStream return new HDFSDataStream(); } else if (fileType.equalsIgnoreCase(CompStreamType)) { //CompressedStream return new HDFSCompressedDataStream(); } else { throw new IOException("File type " + fileType + " not supported"); }
BucketWriter可以理解成是对下层数据操作的一个封装,比如数据写入时其实调用了其append方法,append主要有下面几个步骤:
1)首先判断文件是否打开:
if (! isOpen) { if(idleClosed) { throw new IOException("This bucket writer was closed due to idling and this handle " + "is thus no longer valid"); } open(); //如果没有打开,则调用open->doOpen->HDFSWriter.open方法打开bucketPath (bucketPath是临时写入目录,比如tmp结尾的目录,targetPath是最终目录) }
doOpen的主要步骤
a.设置两个文件名:
bucketPath = filePath + DIRECTORY_DELIMITER + inUsePrefix + fullFileName + inUseSuffix; targetPath = filePath + DIRECTORY_DELIMITER + fullFileName;
b.调用HDFSWriter.open方法打开bucketPath
if (codeC == null) { // Need to get reference to FS using above config before underlying // writer does in order to avoid shutdown hook & IllegalStateExceptions fileSystem = new Path(bucketPath ).getFileSystem(config); LOG.info("Creating " + bucketPath ); writer.open( bucketPath); } else { // need to get reference to FS before writer does to avoid shutdown hook fileSystem = new Path(bucketPath ).getFileSystem(config); LOG.info("Creating " + bucketPath ); writer.open( bucketPath, codeC , compType ); }
c.如果设置了rollInterval ,则执行计划任务调用close方法
// if time-based rolling is enabled, schedule the roll if (rollInterval > 0) { Callable<Void> action = new Callable<Void>() { public Void call() throws Exception { LOG.debug("Rolling file ({}): Roll scheduled after {} sec elapsed." , bucketPath, rollInterval ); try { close(); } catch(Throwable t) { LOG.error("Unexpected error" , t); } return null ; } }; timedRollFuture = timedRollerPool.schedule(action, rollInterval , TimeUnit. SECONDS); }
2)判断文件是否需要翻转(达到hdfs.rollSize或者hdfs.rollCount设置):
// check if it‘s time to rotate the file if (shouldRotate()) { close(); //close调用flush+doClose,flush调用doFlush,doFlush调用HDFSWriter.sync方法把数据同步到hdfs中 open(); }
其中shouldRotate(基于数量和大小的roll方式):
private boolean shouldRotate() { boolean doRotate = false; if (( rollCount > 0) && (rollCount <= eventCounter )) { //hdfs.rollCount大于0并且处理的event的数量大于或等于hdfs.rollCount,doRotate 设置为true LOG.debug( "rolling: rollCount: {}, events: {}" , rollCount , eventCounter ); doRotate = true; } if (( rollSize > 0) && ( rollSize <= processSize)) { //hdfs.rollCount大于0并且处理的event的数量大于或等于hdfs.rollCount,doRotate 设置为true LOG.debug( "rolling: rollSize: {}, bytes: {}" , rollSize , processSize ); doRotate = true; } return doRotate; }
其中doClose主要的步骤
a.调用HDFSWriter.close方法
b.调用renameBucket方法把tmp文件命名为最终文件:
if (bucketPath != null && fileSystem != null) { renameBucket(); // could block or throw IOException fileSystem = null; }
其中renameBucket:
fileSystem.rename(srcPath, dstPath)
3)调用HDFSWriter.append方法写入Event
writer.append(event);
4) 更新计数器
// update statistics processSize += event.getBody(). length; eventCounter++; batchCounter++;
5)判断是否需要flush(达到hdfs.batchSize的设置),batch写入数据到hdfs
if (batchCounter == batchSize) { flush(); }
Event写入时BucketWriter的append方法调用org.apache.flume.sink.hdfs.HDFSWriter实现类的append方法,比如这里的HDFSDataStream类,HDFSDataStream的主要方法:
configure用于设置serializer:
public void configure(Context context) { serializerType = context.getString( "serializer", "TEXT" ); //默认序列化方式为TEXT useRawLocalFileSystem = context.getBoolean( "hdfs.useRawLocalFileSystem", false); serializerContext = new Context(context.getSubProperties(EventSerializer.CTX_PREFIX)); logger.info( "Serializer = " + serializerType + ", UseRawLocalFileSystem = " + useRawLocalFileSystem); } append方法用于Event的写入,调用EventSerializer.write方法: public void append(Event e) throws IOException { // shun flumeformatter... serializer.write(e); //调用EventSerializer.write方法写入Event }
open方法主要步骤:
1)根据hdfs.append.support的设置(默认为false)打开或者新建文件
boolean appending = false; if (conf.getBoolean( "hdfs.append.support", false ) == true && hdfs.isFile (dstPath)) { //默认hdfs.append.support为false outStream = hdfs.append(dstPath); appending = true; } else { outStream = hdfs.create(dstPath); //如果不支持append,则创建文件 }
2)使用EventSerializerFactory.getInstance方法创建EventSerializer的对象
serializer = EventSerializerFactory.getInstance( serializerType, serializerContext , outStream ); //实例化EventSerializer对象
3)如果EventSerializer对象支持reopen,并且hdfs.append.support设置为true时会抛出异常
if (appending && ! serializer.supportsReopen()) { outStream.close(); serializer = null; throw new IOException("serializer (" + serializerType + ") does not support append"); }
4)调用文件打开或者reopen之后的操作
if (appending) { serializer.afterReopen(); } else { serializer.afterCreate(); } }
这里hdfs.writeFormat的3种设置和对应的类:
TEXT(BodyTextEventSerializer.Builder. class), //支持reopen HEADER_AND_TEXT(HeaderAndBodyTextEventSerializer.Builder. class), //支持reopen AVRO_EVENT(FlumeEventAvroEventSerializer.Builder. class), // 不支持reopen
默认设置为TEXT,即BodyTextEventSerializer类:
private BodyTextEventSerializer(OutputStream out, Context ctx) { //构造方法 this. appendNewline = ctx.getBoolean(APPEND_NEWLINE , APPEND_NEWLINE_DFLT ); //默认为true this. out = out; } .... public void write(Event e) throws IOException { //write方法 out.write(e.getBody()); //java.io.OutputStream.write,只写Event的body if (appendNewline) { //每一行之后增加一个回车 out.write(‘\n‘); }