小波变换 C++ opencv 实现

小波变换 C++ opencv 实现

小波简介: http://www.blogbus.com/shijuanfeng-logs/221293135.html

源码:

 
///  小波变换
Mat WDT( const Mat &_src, const string _wname, const int _level )const
{
    int reValue = THID_ERR_NONE;
    Mat src = Mat_<float>(_src);
    Mat dst = Mat::zeros( src.rows, src.cols, src.type() ); 
    int N = src.rows;
    int D = src.cols;
 
    /// 高通低通滤波器
    Mat lowFilter; 
    Mat highFilter;
    wavelet( _wname, lowFilter, highFilter );
 
    /// 小波变换
    int t=1;
    int row = N;
    int col = D;
 
    while( t<=_level )
    {
        ///先进行行小波变换
        for( int i=0; i<row; i++ ) 
        {
            /// 取出src中要处理的数据的一行
            Mat oneRow = Mat::zeros( 1,col, src.type() );
            for ( int j=0; j<col; j++ )
            {
                oneRow.at<float>(0,j) = src.at<float>(i,j);
            }
            oneRow = waveletDecompose( oneRow, lowFilter, highFilter );
            /// 将src这一行置为oneRow中的数据
            for ( int j=0; j<col; j++ )
            {
                dst.at<float>(i,j) = oneRow.at<float>(0,j);
            }
        }
 
#if 0
        //normalize( dst, dst, 0, 255, NORM_MINMAX );
        IplImage dstImg1 = IplImage(dst); 
        cvSaveImage( "dst.jpg", &dstImg1 );
#endif
        /// 小波列变换
        for ( int j=0; j<col; j++ )
        {
            /// 取出src数据的一行输入
            Mat oneCol = Mat::zeros( row, 1, src.type() );
            for ( int i=0; i<row; i++ )
            {
                oneCol.at<float>(i,0) = dst.at<float>(i,j);
            }
            oneCol = ( waveletDecompose( oneCol.t(), lowFilter, highFilter ) ).t();
        
            for ( int i=0; i<row; i++ )
            {
                dst.at<float>(i,j) = oneCol.at<float>(i,0);
            }
        }
 
#if 0
        //normalize( dst, dst, 0, 255, NORM_MINMAX );
        IplImage dstImg2 = IplImage(dst); 
        cvSaveImage( "dst.jpg", &dstImg2 );
#endif
 
        /// 更新
        row /= 2;
        col /=2;
        t++;
        src = dst;
    }
 
    return dst;
}
 
///  小波逆变换
Mat IWDT( const Mat &_src, const string _wname, const int _level )const
{
    int reValue = THID_ERR_NONE;
    Mat src = Mat_<float>(_src);
    Mat dst = Mat::zeros( src.rows, src.cols, src.type() ); 
    int N = src.rows;
    int D = src.cols;
 
    /// 高通低通滤波器
    Mat lowFilter; 
    Mat highFilter;
    wavelet( _wname, lowFilter, highFilter );
 
    /// 小波变换
    int t=1;
    int row = N/std::pow( 2., _level-1);
    int col = D/std::pow(2., _level-1);
 
    while ( row<=N && col<=D )
    {
        /// 小波列逆变换
        for ( int j=0; j<col; j++ )
        {
            /// 取出src数据的一行输入
            Mat oneCol = Mat::zeros( row, 1, src.type() );
            for ( int i=0; i<row; i++ )
            {
                oneCol.at<float>(i,0) = src.at<float>(i,j);
            }
            oneCol = ( waveletReconstruct( oneCol.t(), lowFilter, highFilter ) ).t();
 
            for ( int i=0; i<row; i++ )
            {
                dst.at<float>(i,j) = oneCol.at<float>(i,0);
            }
        }
 
#if 0
        //normalize( dst, dst, 0, 255, NORM_MINMAX );
        IplImage dstImg2 = IplImage(dst); 
        cvSaveImage( "dst.jpg", &dstImg2 );
#endif
        ///行小波逆变换
        for( int i=0; i<row; i++ ) 
        {
            /// 取出src中要处理的数据的一行
            Mat oneRow = Mat::zeros( 1,col, src.type() );
            for ( int j=0; j<col; j++ )
            {
                oneRow.at<float>(0,j) = dst.at<float>(i,j);
            }
            oneRow = waveletReconstruct( oneRow, lowFilter, highFilter );
            /// 将src这一行置为oneRow中的数据
            for ( int j=0; j<col; j++ )
            {
                dst.at<float>(i,j) = oneRow.at<float>(0,j);
            }
        }
 
#if 0
        //normalize( dst, dst, 0, 255, NORM_MINMAX );
        IplImage dstImg1 = IplImage(dst); 
        cvSaveImage( "dst.jpg", &dstImg1 );
#endif
 
        row *= 2;
        col *= 2;
        src = dst;
    }
 
    return dst;
}
 
 
////////////////////////////////////////////////////////////////////////////////////////////
 
/// 调用函数
 
/// 生成不同类型的小波,现在只有haar,sym2
void wavelet( const string _wname, Mat &_lowFilter, Mat &_highFilter )const
{
    if ( _wname=="haar" || _wname=="db1" )
    {
        int N = 2;
        _lowFilter = Mat::zeros( 1, N, CV_32F );
        _highFilter = Mat::zeros( 1, N, CV_32F );
        
        _lowFilter.at<float>(0, 0) = 1/sqrtf(N); 
        _lowFilter.at<float>(0, 1) = 1/sqrtf(N); 
 
        _highFilter.at<float>(0, 0) = -1/sqrtf(N); 
        _highFilter.at<float>(0, 1) = 1/sqrtf(N); 
    }
    if ( _wname =="sym2" )
    {
        int N = 4;
        float h[] = {-0.483, 0.836, -0.224, -0.129 };
        float l[] = {-0.129, 0.224,    0.837, 0.483 };
 
        _lowFilter = Mat::zeros( 1, N, CV_32F );
        _highFilter = Mat::zeros( 1, N, CV_32F );
 
        for ( int i=0; i<N; i++ )
        {
            _lowFilter.at<float>(0, i) = l[i]; 
            _highFilter.at<float>(0, i) = h[i]; 
        }
 
    }
}
 
/// 小波分解
Mat waveletDecompose( const Mat &_src, const Mat &_lowFilter, const Mat &_highFilter )const
{
    assert( _src.rows==1 && _lowFilter.rows==1 && _highFilter.rows==1 );
    assert( _src.cols>=_lowFilter.cols && _src.cols>=_highFilter.cols );
    Mat &src = Mat_<float>(_src);
 
    int D = src.cols;
    
    Mat &lowFilter = Mat_<float>(_lowFilter);
    Mat &highFilter = Mat_<float>(_highFilter);
 
 
    /// 频域滤波,或时域卷积;ifft( fft(x) * fft(filter)) = cov(x,filter) 
    Mat dst1 = Mat::zeros( 1, D, src.type() );
    Mat dst2 = Mat::zeros( 1, D, src.type()  );
 
    filter2D( src, dst1, -1, lowFilter );
    filter2D( src, dst2, -1, highFilter );
 
 
    /// 下采样
    Mat downDst1 = Mat::zeros( 1, D/2, src.type() );
    Mat downDst2 = Mat::zeros( 1, D/2, src.type() );
 
    resize( dst1, downDst1, downDst1.size() );
    resize( dst2, downDst2, downDst2.size() );
 
 
    /// 数据拼接
    for ( int i=0; i<D/2; i++ )
    {
        src.at<float>(0, i) = downDst1.at<float>( 0, i );
        src.at<float>(0, i+D/2) = downDst2.at<float>( 0, i );
    }
 
    return src;
}
 
/// 小波重建
Mat waveletReconstruct( const Mat &_src, const Mat &_lowFilter, const Mat &_highFilter )const
{
    assert( _src.rows==1 && _lowFilter.rows==1 && _highFilter.rows==1 );
    assert( _src.cols>=_lowFilter.cols && _src.cols>=_highFilter.cols );
    Mat &src = Mat_<float>(_src);
 
    int D = src.cols;
 
    Mat &lowFilter = Mat_<float>(_lowFilter);
    Mat &highFilter = Mat_<float>(_highFilter);
 
    /// 插值;
    Mat Up1 = Mat::zeros( 1, D, src.type() );
    Mat Up2 = Mat::zeros( 1, D, src.type() );
 
    /// 插值为0
    //for ( int i=0, cnt=1; i<D/2; i++,cnt+=2 )
    //{
    //    Up1.at<float>( 0, cnt ) = src.at<float>( 0, i );     ///< 前一半
    //    Up2.at<float>( 0, cnt ) = src.at<float>( 0, i+D/2 ); ///< 后一半
    //}
 
    /// 线性插值
    Mat roi1( src, Rect(0, 0, D/2, 1) );
    Mat roi2( src, Rect(D/2, 0, D/2, 1) );
    resize( roi1, Up1, Up1.size(), 0, 0, INTER_CUBIC );
    resize( roi2, Up2, Up2.size(), 0, 0, INTER_CUBIC );
 
    /// 前一半低通,后一半高通
    Mat dst1 = Mat::zeros( 1, D, src.type() );
    Mat dst2= Mat::zeros( 1, D, src.type() );
    filter2D( Up1, dst1, -1, lowFilter );
    filter2D( Up2, dst2, -1, highFilter );
 
    /// 结果相加
    dst1 = dst1 + dst2;
 
    return dst1;
 
}
时间: 2024-10-21 13:24:12

小波变换 C++ opencv 实现的相关文章

基于opencv的小波变换

基于opencv的小波变换 提供函数DWT()和IDWT(),前者完成任意层次的小波变换,后者完成任意层次的小波逆变换.输入图像要求必须是单通道浮点图像,对图像大小也有要求(1层变换:w,h必须是2的倍数:2层变换:w,h必须是4的倍数:3层变换:w,h必须是8的倍数......),变换后的结果直接保存在输入图像中.1.函数参数简单,图像指针pImage和变换层数nLayer.2.一个函数直接完成多层次二维小波变换,尽量减少下标运算,避免不必要的函数调用,以提高执行效率.3.变换过程中,使用了一

基于opencv的小波变换代码和图像结果

1 #include "stdafx.h" 2 #include "WaveTransform.h" 3 #include <math.h> 4 #include <imgproc/imgproc.hpp> 5 Mat WaveTransform::WDT(const Mat &_src,const string _wname,const int _level) 6 { 7 Mat src=Mat_<float>(_src

基于OpenCV进行图像拼接原理解析和编码实现(提纲 代码和具体内容在课件中)

一.背景 1.1概念定义 我们这里想要实现的图像拼接,既不是如题图1和2这样的"图片艺术拼接",也不是如图3这样的"显示拼接",而是实现类似"BaiDU全景"这样的全部的或者部分的实际场景的重新回放. 对于图像拼接的流程有很多定义方式,本教程中主要介绍实现主流方法,总结梳理如下: 图像采集->投影变换->特征点匹配->拼接对准->融合->反投影 图像采集不仅仅指的是普通的图像数据的获取.为了能够拼接过程能够顺利进行.

学习OpenCV——Gabor函数的应用

原文:http://blog.csdn.net/yao_zhuang/article/details/2532279 下载cvgabor.cpp和cvgabor.h到你的C/C++工程目录下 注:在我的资源中有改进过的cvgabor类 相关链接为:http://download.csdn.net/source/490114 特别注意:使用该类需要opencv库的支持,如何配置环境参见:http://www.opencv.org.cn/index.php/Template:Install 它有如下

目标检测之harr---角点检测harr 的opencv实现

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接: http://blog.csdn.net/poem_qianmo/article/details/29356187 作者:毛星云(浅墨) 微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本: 2.4.9 本篇文章中,我们一起探讨了OpenCV中Ha

MAC平台下Xcode配置使用OpenCV的具体方法 (2016最新)

1.序言: 1.1 背景 本人小白一枚,不过因为最近在从事机器视觉方面的工作,所以接触到OpenCV. 因为工作需求,本人要在MAC端使用OpenCV实现一些视觉功能,配置环境成了最大的阻碍,网上查了很多相关资料和博客,都因为版本环境问题屡试屡败,不过经历重重尝试,笔者最终还是配置成功并运行了自己的源码.当然成功的关键还是因为笔者站在了巨人的肩膀上,借鉴了很多网上的教程,为了不误导大家配置的过程,参考文章的地址统一放在文章里,望各位大大看见之后能够理解,废话不说进入正题. 1.2 环境说明 如果

Ubuntu16.04安装tensorflow+安装opencv+安装openslide+安装搜狗输入法

Ubuntu16.04在cuda以及cudnn安装好之后,安装tensorflow,tensorflow以及opencv可以到网上下载对应的安装包并且直接在安装包所在的路径下直接通过pip与conda进行安装,如下图所示: 前提是要下载好安装包.安装好tensorflow之后还需要进行在~/.bashrc文件中添加系统路径,如下图所示 Openslide是医学图像一个重要的库,这里给出三条命令进行安装 sudo apt-get install openslide-tools sudo apt-g

关于opencv的文件配置详细内容

原文链接:http://blog.csdn.net/zhuce0001/article/details/21279527 最近在做opencv的一些代码的修修补补的工作: 但在此之前,根本没接触过cpp,更别谈vs,opencv 最近一段时间改代码,感觉自己学习很多东西,在这个过程中一直不断查资料,也没有时间去好好整理一下,但是查资料的过程中发现很多很好的博客,就记录下来方便自己日后查询,很感谢这些热爱分享的大佬 一.只对当前工程起作用的设置1. 设置头文件包含路径   工程上右击,选择"属性&

形象易懂讲解算法I——小波变换

https://zhuanlan.zhihu.com/p/22450818?refer=dong5 最早发于回答:能不能通俗的讲解下傅立叶分析和小波分析之间的关系? - 咚懂咚懂咚的回答现收入专栏. 从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象.小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路. 下面我就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西.小波究竟是怎样的思路.(反正题主要求的是通俗形