斐波那契数列的定义如下:
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input输入1个数n(1 <= n <= 10^18)。Output输出F(n) % 1000000009的结果。Sample Input
11
Sample Output
89
用o(logn)方法解。
1 #include <cstdio> 2 #include <iostream> 3 #include <vector> 4 using namespace std; 5 typedef long long ll; 6 typedef vector<long long> vec; 7 typedef vector<vec> mat; 8 const ll N = 1000000009; 9 mat mul(mat a,mat b) 10 { 11 mat c(a.size(),vec(b[0].size())); 12 for(ll i=0;i<a.size();i++) 13 { 14 for(ll k=0;k<b.size();k++) 15 { 16 for(ll j=0;j<b[0].size();j++) 17 c[i][j] = ( c[i][j] + a[i][k] * b[k][j] ) % N; 18 } 19 } 20 return c; 21 } 22 23 mat solve_pow(mat a,ll n) 24 { 25 mat b(a.size(),vec(a.size())); 26 for(ll i=0;i<a.size();i++) 27 b[i][i]=1; 28 while(n>0) 29 { 30 if(n & 1) 31 b=mul(b,a); 32 a=mul(a,a); 33 n >>= 1; 34 } 35 36 return b; 37 } 38 ll n; 39 void solve() 40 { 41 mat a(2,vec(2)); 42 while(~scanf("%lld",&n) && n!=-1) 43 { 44 a[0][0]=1,a[0][1]=1; 45 a[1][0]=1,a[1][1]=0; 46 a=solve_pow(a,n); 47 printf("%lld\n",a[1][0]); 48 } 49 } 50 int main() 51 { 52 solve(); 53 return 0; 54 }
时间: 2024-12-28 15:45:13