此文是斯坦福大学,机器学习界 superstar — Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记。
力求简洁,仅代表本人观点,不足之处希望大家探讨。
课程网址:https://www.coursera.org/learn/machine-learning/home/welcome
Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/article/details/47398843
Week 2:Linear Regression with Multiple Variables
- Multivariate Linear Regression
- Week 1 讨论仅一个特征,即仅有一个未知量x 影响了目标y 的取值。
假设如今有非常多特征?如今我们有x 1 ,x 2 ...x n 影响了目标y 的取值。
- 此时须要区分的是变量标记规则:
- x i 表示的是第i 个特征
- x (i) 表示的是第i 个样本,一个样本是由多个特征组成的列向量
- 比如:x (2) =[x (2) 1 ,x (2) 2 ,x (2) 3 ,...,x (2) n ] T
- 综上,我们有h θ (x)=θ 0 +θ 1 ?x 1 +θ 2 ?x 2 +...+θ n ?x n 。能够视为。每一个样本都多出一个特征:x 0 =1 ,这样表示有利于之后的矩阵表示
- Week 1 讨论仅一个特征,即仅有一个未知量x 影响了目标y 的取值。
-
多变量梯度下降法:
样本一共同拥有m个
cost function:J(θ 0 ,θ 1 )=12m ∑ i=1 m (h θ (x (i) )?y (i) ) 2
update:θ j :=θ j ?α1m ∑ i=1 m ((h θ (x (i) )?y (i) )?x (i) j )
- Feature Scaling(特征缩放)
- 非常easy。就是将每种特征的数据范围限定在同一个数量级。比如x 1 ∈[0,2000],x 2 ∈[1,5] ,这样会导致迭代次数过多。这时候,假设我们找到一种mapping方式,使得两者属于同一个数量级的范围内,能够有效减少迭代次数
- 注意:无法减少单次的迭代时间。可是却能有效地减少迭代次数
- 事实上方法非常多,这有一种:x=x?mean(x)max(x)?min(x) 。当中,mean(x) 表示向量每一个元素的平均值。max(x) 表示向量中最大元素,min(x) 表示向量中最小元素
- Learning Rate
- learning rate 是机器学习中的一个不稳定因素,怎样推断选取的 learning rate 是合适的?我们能够看看下面这幅图:
- 假设以迭代次数为横坐标,cost function 结果为纵坐标。绘制的图像是递减的,说明 learning rate 选择的是恰当的。假设碰到下图所显示的三种情况。那就仅仅有一条路:减小 learning rate
- 可是 learning rate 太小相同会导致一个问题:学习过慢。所以,仅仅能靠试:0.001。0.003,0.01,0.03,0.1,0.3……
- Polynomial Regression(多项式回归。不同于多变量线性回归)
- 有时候。我们须要自己创造一些“特征”,来拟合一些非线性分布情况
- 比如:h θ (x)=θ 0 +θ 1 ?x 2 +θ 2 ?x √ ,看上去仅仅有一个特征x ,但我们全然能够理解为x 2 和x √ 都是单独的新特征
- 以后的课程会详细讲述怎样选择这些特征
- Normal Equation
- 梯度下降法能够用于寻找函数(cost function)的最小值。想一想,初高中的时候我们使用的是什么方法?最小值点的导数为零,然后解方程
- 将导数置为零这样的方法即 Normal Equation。if θ∈R n+1 ,??θ i J(θ)= set 0 for every i .
- 上文提过,添加一个全1分量x 0 后得到x=[x 0 ,x 1 ,x 2 ,x 3 ,...,x n ] T
- 能够得到:xθ=y?x T xθ=x T y?θ=(x T x) ?1 x T y
- matlab编程十分简单:theta=pinv(X ′ ?X)?X ′ ?y;
- Normal Equation 有下面优缺点:
- 不须要 learning rate,也就不须要选择。
- 不须要迭代,不须要考虑收敛的问题;
- 当特征非常多的时候。由于涉及求逆操作,会非常慢(注:方阵才有逆矩阵)
- Octave Tutorial
这一部分十分简单。事实上就是MATLAB的用法。建议不论是否刚開始学习的人都去看看,会有收获。
谈到一个问题:假设现有的样本数,小于每一个样本全部的特征数怎么办?去除多余的特征(PCA?)。特征过多,也可能会导致矩阵不可逆的情况(不甚理解)。
下面记录一些认为挺有趣的命令:
- ~=:不等于号
- xor(0, 1):异或操作
- rand(m, n):0~1之间的大小为m*n的随机数矩阵;randn:产生均值为0,方差为1的符合正态分布的随机数(有负数)
- length(A):返回A中行、列中更大值
- A(:):将矩阵A变为列向量形式。不论A是向量还是矩阵
- sum(A,1):每列求和得到一个行向量;sum(A,2):每行求和得到一个列向量
- pinv:伪求逆;inv:求逆
- imagesc(A):帅爆!依据矩阵中每一个值绘制各种颜色的方块
- A.^2 ~= A^2,后者是两个矩阵相乘
- Submitting Programming Assignments
事实上看看视频即可了。主要要注意,submit() 时输入的Token,不是Coursera 的password,而是作业的password,在这里:
时间: 2024-12-25 15:51:56