POJ 3169 Layout (差分约束系统 + Bellman-ford算法)

Layout

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7613   Accepted: 3658

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

USACO 2005 December Gold

题意:一个牛舍里有N头牛,有一些牛的关系比较好,他们希望彼此不超过一定的距离。当然也有些牛关系不好,他们希望彼此超过一定的距离。有ML对牛的关系比较好,并给出每对牛的所不超过的距离D;同样,有MD对牛的关系不好,并给出每对牛的所超过的距离D。问是否有满足这样的安排方案满足所有牛的要求。若不存在,输出-1;若存在,但是牛1和牛N之间的距离可以任意大,输出-2;否则,输出牛1和牛N之间的最大距离。

解析:记第i号牛的位置是d[i],首先,牛市按照编号顺序排的,所以有d[i] <= d[i+1]成立。其次,对于关系好的牛的最大距离限制有d[AL] + DL >= d[BL],同样对于关系不好的牛的最小距离限制有d[AD] + DD <= d[BD]。这样,原来的问题就可以转化为在满足着三个不等式组的情况下,求解d[N] - d[1]的最大值问题。当然可以用线性规划的方法去解决。但是这道题还可以更简单的求解。这个可以抽象为一个无向图,各个牛为顶点,他们之间的好或不好的关系为边,限制的距离作为边尚德权值。这样可以将这三个不等式转化一下:d[i+1]
+ 0 >= d[i]表示从i+1到i连一条权值为0的边,d[AL] + DL >= d[BL]表示从AL到BL连一条权值为DL的边,d[BD] - DD >= d[AD]表示从BD到AD连一条权值为-DD的边。所求d[N] - d[1]的最大值,对应于d[1]到d[n]之间的最短路径。由于存在负权边,所以用bellman-ford算法。

AC代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <stack>
using namespace std;
#define INF 123456789
#define LL long long
#define MID(a, b)  a+(b-a)/2
const int maxn = 1000 + 10;
const int maxm = 10000 + 10;

int al[maxm], bl[maxm], dl[maxm];
int ad[maxm], bd[maxm], dd[maxm];
int d[maxn];
int N, ML, MD;

void solve(){
    fill(d, d+N, INF);             //初始化d[]
    d[0] = 0;

    for(int i=0; i<N; i++){
        for(int j=0; j+1<N; j++)          //检查d[j]能否通过d[j+1]松弛
            if(d[j+1] < INF) d[j] = min(d[j], d[j+1] + 0);

        for(int j=0; j<ML; j++)           //检查d[BL]能否通过d[AL]松弛
            if(d[ al[j] - 1 ] < INF) d[ bl[j] - 1 ] = min(d[ bl[j] - 1 ], d[ al[j] - 1 ] + dl[j]);

        for(int j=0; j<MD; j++)           //检查d[AD]能否通过d[BD]松弛
            if(d[ bd[j] - 1 ] < INF) d[ ad[j] - 1 ] = min(d[ ad[j] - 1 ], d[ bd[j] - 1 ] - dd[j]);
    }

    int ans = d[N-1];
    if(d[0] < 0) ans = -1;
    else if(ans == INF) ans = -2;
    printf("%d\n", ans);
}

int main(){
    #ifdef sxk
        freopen("in.txt", "r", stdin);
    #endif // sxk

    while(scanf("%d%d%d", &N, &ML, &MD)!=EOF){
        for(int i=0; i<ML; i++) scanf("%d%d%d", &al[i], &bl[i], &dl[i]);
        for(int i=0; i<MD; i++) scanf("%d%d%d", &ad[i], &bd[i], &dd[i]);
        solve();
    }
    return 0;
}
时间: 2024-10-28 20:01:07

POJ 3169 Layout (差分约束系统 + Bellman-ford算法)的相关文章

PKU 3169 Layout(差分约束系统+Bellman Ford)

题目大意:原题链接 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相同的.因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上(即间距可能为0).即是说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标. 一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L.另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D.

POJ 3169 Layout (差分约束系统)

题目地址:POJ 3169 很简单的差分约束..公式很明显.当输入最大值的时候,是a-b<=c,最小值的时候是a-b>=c.然后根据这个式子用最短路求. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctyp

poj 3169 Layout (差分约束+Bellman )

题目链接:http://poj.org/problem?id=3169 题意:输入N, ML, MD, N默示有N个牛按1-N排成一排,ML,默示有ML行,每行输入A, B, D默示A牛和B牛最远间隔为D, MD默示有MD行,每行输入A,B,D默示A牛和B来间隔为D,求满足所有前提的1-N的最大间隔. 比较简单的差分约束,这个周周赛的A题 #include <iostream> #include <cstdlib> #include <cstdio> #include

POJ 3169 Layout (差分约束+SPFA)

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6832   Accepted: 3292 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a

POJ 3169 Layout(差分约束啊)

题目链接:http://poj.org/problem?id=3169 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing

POJ 3169 Layout (差分约束)

题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个,D[i] - D[i+1] <= 0,  D[j] -D[i ]<= k, D[i] - D[j] <= - k,那么这个题就可以用差分约束来求这个不等式组了. 1.对于差分不等式,a - b <= c ,建一条 b 到 a 的权值为 c 的边,求的是最短路,得到的是最大值(本题求的就

POJ 3169 Layout(差分约束 线性差分约束)

题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距离, 若无解输出-1, 若无限长输出-2 分析: 3个关系对应的 <= 式子是: dis[b] - dis[a] <= d(1) dis[a] - dis[b] <= -d(2) dis[i] - dis[i+1] <= -1(2) 目标式:dis[N] - dis[1] <=

POJ 3169 Layout (差分约束入门)

线性约束 将所有不等式化成 \(d[a] - d[b] <= c\) 的形式,即有 \(a,b,c\)这条有向边,跑最短路即可 #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<vector> #define ll long long using namespace std; typedef pair<int,int>

poj 3169 Layout(差分约束)

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6549   Accepted: 3168 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a

POJ 3169 Layout (图论-差分约束)

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a