【Java集合源码剖析】ArrayList源码剖析

转载请注明出处:http://blog.csdn.net/ns_code/article/details/35568011


ArrayList简介

ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存。

ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的CopyOnWriteArrayList类。

ArrayList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了RandomAccess接口,支持快速随机访问,实际上就是通过下标序号进行快速访问,实现了Cloneable接口,能被克隆。

ArrayList源码剖析

ArrayList的源码如下(加入了比较详细的注释):

package java.util;  

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    // 序列版本号
    private static final long serialVersionUID = 8683452581122892189L;  

    // ArrayList基于该数组实现,用该数组保存数据
    private transient Object[] elementData;  

    // ArrayList中实际数据的数量
    private int size;  

    // ArrayList带容量大小的构造函数。
    public ArrayList(int initialCapacity) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        // 新建一个数组
        this.elementData = new Object[initialCapacity];
    }  

    // ArrayList无参构造函数。默认容量是10。
    public ArrayList() {
        this(10);
    }  

    // 创建一个包含collection的ArrayList
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        size = elementData.length;
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    }  

    // 将当前容量值设为实际元素个数
    public void trimToSize() {
        modCount++;
        int oldCapacity = elementData.length;
        if (size < oldCapacity) {
            elementData = Arrays.copyOf(elementData, size);
        }
    }  

    // 确定ArrarList的容量。
    // 若ArrayList的容量不足以容纳当前的全部元素,设置 新的容量=“(原始容量x3)/2 + 1”
    public void ensureCapacity(int minCapacity) {
        // 将“修改统计数”+1,该变量主要是用来实现fail-fast机制的
        modCount++;
        int oldCapacity = elementData.length;
        // 若当前容量不足以容纳当前的元素个数,设置 新的容量=“(原始容量x3)/2 + 1”
        if (minCapacity > oldCapacity) {
            Object oldData[] = elementData;
            int newCapacity = (oldCapacity * 3)/2 + 1;
			//如果还不够,则直接将minCapacity设置为当前容量
            if (newCapacity < minCapacity)
                newCapacity = minCapacity;
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
    }  

    // 添加元素e
    public boolean add(E e) {
        // 确定ArrayList的容量大小
        ensureCapacity(size + 1);  // Increments modCount!!
        // 添加e到ArrayList中
        elementData[size++] = e;
        return true;
    }  

    // 返回ArrayList的实际大小
    public int size() {
        return size;
    }  

    // ArrayList是否包含Object(o)
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }  

    //返回ArrayList是否为空
    public boolean isEmpty() {
        return size == 0;
    }  

    // 正向查找,返回元素的索引值
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
            if (elementData[i]==null)
                return i;
            } else {
                for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
            }
            return -1;
        }  

        // 反向查找,返回元素的索引值
        public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
            if (elementData[i]==null)
                return i;
        } else {
            for (int i = size-1; i >= 0; i--)
            if (o.equals(elementData[i]))
                return i;
        }
        return -1;
    }  

    // 反向查找(从数组末尾向开始查找),返回元素(o)的索引值
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
            if (elementData[i]==null)
                return i;
        } else {
            for (int i = size-1; i >= 0; i--)
            if (o.equals(elementData[i]))
                return i;
        }
        return -1;
    }  

    // 返回ArrayList的Object数组
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }  

    // 返回ArrayList元素组成的数组
    public <T> T[] toArray(T[] a) {
        // 若数组a的大小 < ArrayList的元素个数;
        // 则新建一个T[]数组,数组大小是“ArrayList的元素个数”,并将“ArrayList”全部拷贝到新数组中
        if (a.length < size)
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());  

        // 若数组a的大小 >= ArrayList的元素个数;
        // 则将ArrayList的全部元素都拷贝到数组a中。
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }  

    // 获取index位置的元素值
    public E get(int index) {
        RangeCheck(index);  

        return (E) elementData[index];
    }  

    // 设置index位置的值为element
    public E set(int index, E element) {
        RangeCheck(index);  

        E oldValue = (E) elementData[index];
        elementData[index] = element;
        return oldValue;
    }  

    // 将e添加到ArrayList中
    public boolean add(E e) {
        ensureCapacity(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }  

    // 将e添加到ArrayList的指定位置
    public void add(int index, E element) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(
            "Index: "+index+", Size: "+size);  

        ensureCapacity(size+1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
             size - index);
        elementData[index] = element;
        size++;
    }  

    // 删除ArrayList指定位置的元素
    public E remove(int index) {
        RangeCheck(index);  

        modCount++;
        E oldValue = (E) elementData[index];  

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                 numMoved);
        elementData[--size] = null; // Let gc do its work  

        return oldValue;
    }  

    // 删除ArrayList的指定元素
    public boolean remove(Object o) {
        if (o == null) {
                for (int index = 0; index < size; index++)
            if (elementData[index] == null) {
                fastRemove(index);
                return true;
            }
        } else {
            for (int index = 0; index < size; index++)
            if (o.equals(elementData[index])) {
                fastRemove(index);
                return true;
            }
        }
        return false;
    }  

    // 快速删除第index个元素
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        // 从"index+1"开始,用后面的元素替换前面的元素。
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        // 将最后一个元素设为null
        elementData[--size] = null; // Let gc do its work
    }  

    // 删除元素
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
            if (elementData[index] == null) {
                fastRemove(index);
            return true;
            }
        } else {
            // 便利ArrayList,找到“元素o”,则删除,并返回true。
            for (int index = 0; index < size; index++)
            if (o.equals(elementData[index])) {
                fastRemove(index);
            return true;
            }
        }
        return false;
    }  

    // 清空ArrayList,将全部的元素设为null
    public void clear() {
        modCount++;  

        for (int i = 0; i < size; i++)
            elementData[i] = null;  

        size = 0;
    }  

    // 将集合c追加到ArrayList中
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacity(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }  

    // 从index位置开始,将集合c添加到ArrayList
    public boolean addAll(int index, Collection<? extends E> c) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(
            "Index: " + index + ", Size: " + size);  

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacity(size + numNew);  // Increments modCount  

        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                 numMoved);  

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }  

    // 删除fromIndex到toIndex之间的全部元素。
    protected void removeRange(int fromIndex, int toIndex) {
    modCount++;
    int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);  

    // Let gc do its work
    int newSize = size - (toIndex-fromIndex);
    while (size != newSize)
        elementData[--size] = null;
    }  

    private void RangeCheck(int index) {
    if (index >= size)
        throw new IndexOutOfBoundsException(
        "Index: "+index+", Size: "+size);
    }  

    // 克隆函数
    public Object clone() {
        try {
            ArrayList<E> v = (ArrayList<E>) super.clone();
            // 将当前ArrayList的全部元素拷贝到v中
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn‘t happen, since we are Cloneable
            throw new InternalError();
        }
    }  

    // java.io.Serializable的写入函数
    // 将ArrayList的“容量,所有的元素值”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
    // Write out element count, and any hidden stuff
    int expectedModCount = modCount;
    s.defaultWriteObject();  

        // 写入“数组的容量”
        s.writeInt(elementData.length);  

    // 写入“数组的每一个元素”
    for (int i=0; i<size; i++)
            s.writeObject(elementData[i]);  

    if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }  

    }  

    // java.io.Serializable的读取函数:根据写入方式读出
    // 先将ArrayList的“容量”读出,然后将“所有的元素值”读出
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in size, and any hidden stuff
        s.defaultReadObject();  

        // 从输入流中读取ArrayList的“容量”
        int arrayLength = s.readInt();
        Object[] a = elementData = new Object[arrayLength];  

        // 从输入流中将“所有的元素值”读出
        for (int i=0; i<size; i++)
            a[i] = s.readObject();
    }
}

几点总结

关于ArrayList的源码,给出几点比较重要的总结:

1、注意其三个不同的构造方法。无参构造方法构造的ArrayList的容量默认为10,带有Collection参数的构造方法,将Collection转化为数组赋给ArrayList的实现数组elementData。

2、注意扩充容量的方法ensureCapacity。ArrayList在每次增加元素(可能是1个,也可能是一组)时,都要调用该方法来确保足够的容量。当容量不足以容纳当前的元素个数时,就设置新的容量为旧的容量的1.5倍加1,如果设置后的新容量还不够,则直接新容量设置为传入的参数(也就是所需的容量),而后用Arrays.copyof()方法将元素拷贝到新的数组(详见下面的第3点)。从中可以看出,当容量不够时,每次增加元素,都要将原来的元素拷贝到一个新的数组中,非常之耗时,也因此建议在事先能确定元素数量的情况下,才使用ArrayList,否则建议使用LinkedList。

3、ArrayList的实现中大量地调用了Arrays.copyof()和System.arraycopy()方法。我们有必要对这两个方法的实现做下深入的了解。

首先来看Arrays.copyof()方法。它有很多个重载的方法,但实现思路都是一样的,我们来看泛型版本的源码:

    public static <T> T[] copyOf(T[] original, int newLength) {
        return (T[]) copyOf(original, newLength, original.getClass());
    }

很明显调用了另一个copyof方法,该方法有三个参数,最后一个参数指明要转换的数据的类型,其源码如下:

    public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
        T[] copy = ((Object)newType == (Object)Object[].class)
            ? (T[]) new Object[newLength]
            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

这里可以很明显地看出,该方法实际上是在其内部又创建了一个长度为newlength的数组,调用System.arraycopy()方法,将原来数组中的元素复制到了新的数组中。

下面来看System.arraycopy()方法。该方法被标记了native,调用了系统的C/C++代码,在JDK中是看不到的,但在openJDK中可以看到其源码。该函数实际上最终调用了C语言的memmove()函数,因此它可以保证同一个数组内元素的正确复制和移动,比一般的复制方法的实现效率要高很多,很适合用来批量处理数组。Java强烈推荐在复制大量数组元素时用该方法,以取得更高的效率。

4、注意ArrayList的两个转化为静态数组的toArray方法。

第一个,Object[] toArray()方法。该方法有可能会抛出java.lang.ClassCastException异常,如果直接用向下转型的方法,将整个ArrayList集合转变为指定类型的Array数组,便会抛出该异常,而如果转化为Array数组时不向下转型,而是将每个元素向下转型,则不会抛出该异常,显然对数组中的元素一个个进行向下转型,效率不高,且不太方便。

第二个,<T> T[] toArray(T[] a)方法。该方法可以直接将ArrayList转换得到的Array进行整体向下转型(转型其实是在该方法的源码中实现的),且从该方法的源码中可以看出,参数a的大小不足时,内部会调用Arrays.copyOf方法,该方法内部创建一个新的数组返回,因此对该方法的常用形式如下:

public static Integer[] vectorToArray2(ArrayList<Integer> v) {
    Integer[] newText = (Integer[])v.toArray(new Integer[0]);
    return newText;
}  

5、ArrayList基于数组实现,可以通过下标索引直接查找到指定位置的元素,因此查找效率高,但每次插入或删除元素,就要大量地移动元素,插入删除元素的效率低。

6、在查找给定元素索引值等的方法中,源码都将该元素的值分为null和不为null两种情况处理,ArrayList中允许元素为null。

【Java集合源码剖析】ArrayList源码剖析,布布扣,bubuko.com

时间: 2024-08-09 10:33:24

【Java集合源码剖析】ArrayList源码剖析的相关文章

Java集合框架之一:ArrayList源码分析

版权声明:本文为博主原创文章,转载请注明出处,欢迎交流学习! ArrayList底层维护的是一个动态数组,每个ArrayList实例都有一个容量.该容量是指用来存储列表元素的数组的大小.它总是至少等于列表的大小.随着向 ArrayList 中不断添加元素,其容量也自动增长. ArrayList不是同步的(也就是说不是线程安全的),如果多个线程同时访问一个ArrayList实例,而其中至少一个线程从结构上修改了列表,那么它必须保持外部同步,在多线程环境下,可以使用Collections.synch

深入理解JAVA集合系列四:ArrayList源码解读

在开始本章内容之前,这里先简单介绍下List的相关内容. List的简单介绍 有序的collection,用户可以对列表中每个元素的插入位置进行精确的控制.用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素.列表通常允许重复的元素,且允许null元素的存放. ArrayList的简单介绍 JDK中这样定义ArrayList:List接口的大小可变数据的实现. 主要有以下特点: 1.有序 2.线程不安全 3.元素可以重复 4.可以存放null值 顾名思义,取名ArrayLis

【源码】ArrayList源码剖析

//-------------------------------------------------------------------- 转载请注明出处:http://blog.csdn.net/chdjj by Rowandjj 2014/8/7 //-------------------------------------------------------------------- 从这篇文章开始,我将对java集合框架中的一些比较重要且常用的类进行分析.这篇文章主要介绍的是Array

Java集合源码剖析——ArrayList源码剖析

ArrayList简介 ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的CopyOnWriteArrayList类. ArrayList实现了Serializable接口,因此它支持序列化,能够通过

【转】Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例

概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解ArrayList.先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它.内容包括:第1部分 ArrayList简介第2部分 ArrayList数据结构第3部分 ArrayList源码解析(基于JDK1.6.0_45)第4部分 ArrayList遍历方式第5部分 toArray

(转)Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例

概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解ArrayList.先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它.内容包括:第1部分 ArrayList简介第2部分 ArrayList数据结构第3部分 ArrayList源码解析(基于JDK1.6.0_45)第4部分 ArrayList遍历方式第5部分 toArray

Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例

概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解ArrayList.先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它.内容包括:第1部分 ArrayList简介第2部分 ArrayList数据结构第3部分 ArrayList源码解析(基于JDK1.6.0_45)第4部分 ArrayList遍历方式第5部分 toArray

1.Java集合-HashMap实现原理及源码分析

哈希表(Hash  Table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出现在各类的面试题中,这里对java集合框架中的对应实现HashMap的实现原理进行讲解,然后对JDK7的HashMap的源码进行分析 哈希算法,是一类算法: 哈希表(Hash  Table)是一种数据结构: 哈希函数:是支撑哈希表的一类函数: HashMap 是 Java中用哈希数据结构实现的Ma

[Java源码分析]ArrayList源码分析

ArrayList是java集合中最常用的,基于一个数组实现的,容量可以动态增长. ArrayList不是现成安全的,只能在单线程环境下使用. 本文以jdk1.8的源码为例,分析其实现机制. 1.基本属性与构造函数 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private sta

java集合的实现细节--ArrayList和LinkedList

 ArrayList和LinkedList的实现差异 List代表一种线性表的数据结构,ArrayList则是一种顺序存储的线性表,ArrayList底层采用动态数组的形式保存每一个集合元素,LinkedList则是一种链式存储的线性表,其本质上就是一个双向链表,它不仅实现了List接口,还实现了Deque接口,Deque代表了一种双端队列,既具有队列(FIFO)的特性,也具有栈(FILO)的特性,也就是说,LinkedList既可以当成双向链表使用,也可以当成队列使用,还可以当成栈来使用. p