基于QT和OpenCV的人脸识别系统

1 系统方案设计

1.1 引言

人脸是一个常见而复杂的视觉模式,人脸所反映的视觉信息在人与人的交流和交往中有着重 要的作用和意义,对人脸进行处理和分析在视频监控、出入口控制、视频会议以及人机交互等领 域都有着广泛的应用前景,因此是模式识别和计算机视觉领域持续的研究热点。

本系统在 FriendlyARM Tiny6410 开发板基础上,利用 OpenCV 计算机视觉库和 QT 图形库,通 过普通的 USB 摄像头实现了自动人脸识别,准确率较高,方便易用。

1.2 系统总体架构

“人脸识别”大致可分为两个阶段:

1. 人脸检测 搜索一幅图像,寻找一切人脸区域(此处以绿色矩形显示),然后进行图像处理,清理脸部图像以便于更好地识别。

2. 人脸识别 把上一阶段检测处理得到的人脸图像与数据库中的已知 人脸进行比对,判定人脸对应的人是谁(此处以白色文本显示)。

1.3 工作流程

系统运行时,自动从 USB 摄像头获取 YUV 格式的图片,转换成 QImage 格式并实时显示在 LCD屏上,再将其转换成 IplImage 格式,利用 OpenCV 的 Haar Cascade Face Detector(也称为 Viola-Jones 方法)进行人脸检测,得到一个矩形区域,截取该矩形区域图像进行直方图均衡化处理,进行训练或识别。

系统训练流程:

点击触摸屏上的按钮获取一帧图片,由训练者判断是否加入训练集。当训练集图片足够后, 点击训练按钮,即使用 PCA 方法处理训练集中的人脸图片,生成 XML 文件。

系统识别流程:

点击触摸屏上的按钮,进入识别状态。得到上述的人脸区域图像后,读取 XML 文件,使用PCA 方法将图像与数据库比对,若可信度超过阈值,则在屏幕上显示出人名。

摄像头可获取多幅图像以提高准确度和可靠性,我们采集多幅图像求可信度平均值与阈值比 较,若可信度平均值大于阈值,则登录系统成功,通过串口发送信号并弹出对话框提示信息;若 在规定时间内未登录成功,则记录访问者的人脸并提示登录失败。

2 系统原理与算法实现

2.1 基于 Haar 特征级联强分类器的人脸检测

多分类器级联结构是很多强分类器的组合,其结构如下图所示:

它是一种由粗到细的结构,其中每一层是 AdaBoost 算法训练得到的一个强分类器,都经过阈 值调整,使得每一层能让全部正例样本通过,而拒绝很大一部分非人脸样本。

本作品使用 OpenCV 中的检测器,使用其自带的一个 XML 文件执行检测。

2.2 基于 PCA 方法的人脸识别

PCA 方法由 Turk 和 Pentlad 首先提出,它的基础就是 Karhunen-Loeve 变换(简称 KL 变换)。 一幅人脸图像(假设为 50x50 像素)是一个 2500 维空间的数据点,我们利用 PCA 方法将所有人脸 图像数据点投影到 PCA 子空间中进行降维和特征提取。

相对于欧式距离,利用马氏距离作为人脸图像间的距离识别效果较好,但由于本作品主要用 于判断待测人脸是否为数据库中人脸,可信度的计算方法极为关键,而目前最好的可信度的计算 方程是基于欧式距离的:

float confidence = 1.0f – sqrt( it→distance /

(float) (trainFacesNum *  eigenVectorsNum) ) / 255.0f;

故本作品仍采用欧式距离。

OpenCV 的人脸检测器获取到人脸图像后,使用直方图均衡化进行图像的预处理,然后调用OpenCV 的库函数进行识别,用上述公式计算出待测人脸可信度。

3 系统测试

第 1~4 次测试中,人脸数据库中只有 ORL 数据库的四个人和 A 的人脸数据,此时 B、C 均为“陌生人”,只有 A 能登录系统。

第 5~9 次测试中,人脸数据库中增加了 B 的数据,此时只有 C 为“陌生人”,A、B 均可登 录系统。

4 结语

本作品以友善之臂的 Tiny6410 开发板为平台,使用普通的 USB 摄像头,设计了一个自动人脸识别系统。系统实现了训练、识别人脸的功能,并在实验室环境下完成了测试。

经测试,使用者在未训练时无法登录系统,其可信度与人脸数据库中已有人员的可信度有一 定差值,可以区分数据库内外人脸。使用者经过训练后即可登录系统。

利用摄像头可以连续获取图像的特性,本作品多次计算可信度取平均值的方法一定程度上提高了识别的可靠性。

当然,本作品仍有很多不足的地方,比如由于驱动程序不完善,单靠软件实现的图像采集速度较慢,导致实时性不高;以及未实现活体检测,存在使用主人照片登录系统的可能。

基于QT和OpenCV的人脸识别系统,布布扣,bubuko.com

时间: 2024-10-27 04:46:23

基于QT和OpenCV的人脸识别系统的相关文章

python使用opencv实现人脸识别系统

1.首先安装过python环境,在这里就不过说    检测是否安装成功如下,在cmd中输入Python     2.安装numpy 现在开始安装numpy,打开cmd,输入pip install numpy 我的电脑已经安装过了,忘记截屏了.就在网上找了图片 测试是否成功 3.安装opencv 在官网自行下载,这里下载的是opencv2.4.10安装. ### (1)复制cv2.pyd 将"\opencv\build\python\2.7\x64"或"\opencv\buil

基于QT和OpenCV的人脸检测识别系统(1)

人脸识别分为两大步骤 1.人脸检测 这个是首要实现的,你得实现人脸显示的时候把人脸框出来,当然算法很多,还有一些人眼检测鼻子检测什么的 主要用的是这个 const char *faceCascadeFilename = "haarcascade_frontalface_alt.xml"; detect_and_draw(IplImageBuffer,storage,cascade); 这个函数就是检测人脸的并画框效果如下 主要代码如下 void Chenaini::detect_and

基于QT和OpenCV的人脸检測识别系统(1)

人脸识别分为两大步骤 1.人脸检測 这个是首要实现的.你得实现人脸显示的时候把人脸框出来,当然算法非常多,另一些人眼检測鼻子检測什么的 主要用的是这个 const char *faceCascadeFilename = "haarcascade_frontalface_alt.xml"; detect_and_draw(IplImageBuffer,storage,cascade); 这个函数就是检測人脸的并画框效果例如以下 watermark/2/text/aHR0cDovL2Jsb

python基于OpenCV的人脸识别系统

想获得所有的代码,请下载(来自我的CSDN): https://download.csdn.net/download/qq_40875849/11292912 主函数: from recognition import recognition from training import training from datasets import datasets from delFile import del_file def main(): facedict = {} cur_path = r'.

基于 OpenCV 的人脸识别

基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影. OpenCV 起始于 1999 年 Intel 的一个内部研究项目.从那时起,它的开发就一直很活跃.进化到现在,它已支持如 OpenCL 和 OpenGL 的多种现代技术,也支持如 iOS

windows平台下基于QT和OpenCV搭建图像处理平台

在之前的博客中,已经分别比较详细地阐述了"windows平台下基于VS和OpenCV"以及"Linux平台下基于QT和OpenCV"搭建图像处理框架,并且生成了相应的免费视频.这篇博客的主要内容,就是基于最新版本的相应工具,在windows平台下,"基于QT和OpenCV搭建图像处理平台",并且进一步研究如何基于QT所见即所得的便利,进行图像处理操作,最终还要和vs做一个比较,进行初步小结. 主要分为3个部分,一个是当前模式下,windows+Q

人脸识别系统在校园的应用场景日益丰富

各类证件.门禁卡.钥匙曾经是高校师生出入校园的必备品,如今在越来越多的高校,师生们只需"刷脸"即可轻松自如享受各种服务.常见的有"刷脸"进校园.进图书馆.进寝室等.作为人工智能领域大规模落地的成熟技术,人脸识别已经被越来越多的教育机构认可,用以构建安全智慧化校园,教育行业的"刷脸"时代正在到来. 在学校大门出入口, "人证合一"身份核验让师生们出入校门无需传达室登记,只需在闸机通道人脸识别终端前面短暂停留,毫秒时间单位内即可&

简述人脸特异性识别&&一个基于LBP和SVM的人脸识别小例子

原谅我用图片,MAC在Safari里给文章进行图文排版太麻烦啦~ 本文适合初入计算机视觉和模式识别方向的同学们观看~ 文章写得匆忙,加上博主所知甚少,有不妥和勘误请指出并多多包涵. 本文Demo的代码由HZK编写,特征点由月神和YK选择和训练. 转载请注明 copyleft by sciencefans, 2014 为了方便大家学习,附上高维LBP的核心代码 1 ################################################### 2 # 3 # 4 # NO

人脸识别系统原理

写这篇文章,并不是要挑战学术泰斗,更不是要在这里炫耀和说教知识.只是前不久有个朋友问我能不能搞人脸识别,我说回来试试.想不到这里头的东西还挺多,不是三两天就能做完的.就在这里把我的实现思路写出来,以表心迹. 图像识别,一直是计算机领域研究的热门,随着大数据的兴起,更是让图像识别中的特殊分支人脸识别如鱼得水,使得运算和样本数据不再成为系统的掣肘.那么具体来说,一个现代人脸识别系统(例如face++)是如何实现的呢? 这里我不敢妄自猜测,我仅提供我自己的实现方法,拿出来与大家一起学习和探讨: 1.首