Divisibility

Description

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
17 + 5 + -21 - 15 = -14 
17 + 5 - -21 + 15 = 58 
17 + 5 - -21 - 15 = 28 
17 - 5 + -21 + 15 = 6 
17 - 5 + -21 - 15 = -24 
17 - 5 - -21 + 15 = 48 
17 - 5 - -21 - 15 = 18 
We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5.

You are to write a program that will determine divisibility of sequence of integers.

Input

The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it‘s absolute value.

Output

Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it‘s not.

Sample Input

4 7
17 5 -21 15

Sample Output

Divisible

题意:给你一列整数,在整数间加‘ + ’ 或 ‘ - ‘,使这个算式的值能被k整除。

用dp[ i ][ j ] 表示加上或减去第 i 个数后,所得值取模后的值能否为 j ,所以dp为bool型即可。

状态转移方程:dp[ i ][ abs( j + num[i]) % k] = true;

dp[ i ][ abs( j -  num[i]) % k] = true; (当然,必须满足dp[ i - 1 ][ j ] == true, 才能进行状态转移)

边界条件:dp[ 0 ][ 0 ] = true;

 1 #include"iostream"
 2 #include"cstdio"
 3 #include"cstring"
 4 #include"algorithm"
 5 #include"map"
 6 #include"set"
 7 #include"stack"
 8 #include"queue"
 9 using namespace std;
10 const int ms=10001;
11 const int mn=102;
12 bool dp[ms][mn];
13 int a[ms];
14 int N,K;
15 void solve()
16 {
17     memset(dp,false,sizeof(dp));
18     dp[0][0]=true;
19     for(int i=1;i<=N;i++)
20         for(int j=0;j<K;j++)
21             if(dp[i-1][j])
22             {
23                 dp[i][abs(j+a[i])%K]=true;   //涉及一点数论
24                 dp[i][abs(j-a[i])%K]=true;
25             }
26     if(dp[N][0])
27         cout<<"Divisible"<<endl;
28     else
29         cout<<"Not divisible"<<endl;
30     return ;
31 }
32 int main()
33 {
34     cin>>N>>K;
35     for(int i=1;i<=N;i++)
36         cin>>a[i];
37     solve();
38     return 0;
39 }
时间: 2024-12-30 04:17:44

Divisibility的相关文章

HDU 3335 Divisibility(DLX可重复覆盖)

Problem Description As we know,the fzu AekdyCoin is famous of math,especially in the field of number theory.So,many people call him "the descendant of Chen Jingrun",which brings him a good reputation. AekdyCoin also plays an important role in th

poj 1745 Divisibility

Divisibility Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu Description Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expr

UVA 10036 Divisibility

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. T

HDU 3335 Divisibility(二分图)

Divisibility Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1714    Accepted Submission(s): 651 Problem Description As we know,the fzu AekdyCoin is famous of math,especially in the field of nu

hust 1062 Divisibility

题目描述 On the planet Zoop, numbers are represented in base 62, using the digits 0, 1, . . . , 9, A, B, . . . , Z, a, b, . . . , z where A (base 62) = 10 (base 10) B (base 62) = 11 (base 10) . . . z (base 62) = 61 (base 10). Given the digit representati

POJ 1745:Divisibility 枚举某一状态的DP

Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11001   Accepted: 3933 Description Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmet

POJ 1745 Divisibility (线性dp)

Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10598   Accepted: 3787 Description Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmet

Codeforces 566 F. Clique in the Divisibility Graph

Codeforces 566F 的传送门 As you must know, the maximum clique problem in an arbitrary graph is NP-hard. Nevertheless, for some graphs of specific kinds it can be solved effectively. Just in case, let us remind you that a clique in a non-directed graph is

数学/找规律/暴力 Codeforces Round #306 (Div. 2) C. Divisibility by Eight

题目传送门 1 /* 2 数学/暴力:只要一个数的最后三位能被8整除,那么它就是答案:用到sprintf把数字转移成字符读入 3 */ 4 #include <cstdio> 5 #include <algorithm> 6 #include <cstring> 7 #include <iostream> 8 #include <cmath> 9 #include <vector> 10 using namespace std; 11