hive深入

Hive QL:

Create Table

创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常。

EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数 据会被一起删除,而外部表只删除元数据,不删除数据。

LIKE 允许用户复制现有的表结构,但是不复制数据。

有分区的表可以在创建的时候使用 PARTITIONED BY 语句。一个表可以拥有一个或者多个分区,每一个分区单独存在一个目录下。而且,表和分区都可以对某个列进行 CLUSTERED BY 操作,将若干个列放入一个桶(bucket)中。也可以利用SORT BY 对数据进行排序。这样可以为特定应用提高性能。

Drop Table

删除一个内部表的同时会同时删除表的元数据和数据。删除一个外部表,只删除元数据而保留数据。

Alter Table

Alter table 语句允许用户改变现有表的结构。用户可以增加列/分区,改变serde,增加表和 serde 熟悉,表本身重命名。

Add Partitions

用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号

  ALTER TABLE page_view ADD
    PARTITION (dt=‘2008-08-08‘, country=‘us‘)
      location ‘/path/to/us/part080808‘
    PARTITION (dt=‘2008-08-09‘, country=‘us‘)
      location ‘/path/to/us/part080809‘;

DROP PARTITION

用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号

ALTER TABLE page_view DROP PARTITION (dt=‘2008-08-08‘, country=‘us‘);

Change Column Name/Type/Position/Comment

ALTER TABLE table_name CHANGE [COLUMN]
  col_old_name col_new_name column_type
    [COMMENT col_comment]
    [FIRST|AFTER column_name]

这个命令可以允许用户修改一个列的名称、数据类型、注释或者位置。

比如:

CREATE TABLE test_change (a int, b int, c int);

ALTER TABLE test_change CHANGE a a1 INT; 将 a 列的名字改为 a1.

ALTER TABLE test_change CHANGE a a1 STRING AFTER b; 将 a 列的名字改为 a1,a 列的数据类型改为 string,并将它放置在列 b 之后。新的表结构为: b int, a1 string, c int.

ALTER TABLE test_change CHANGE b b1 INT FIRST; 会将 b 列的名字修改为 b1, 并将它放在第一列。新表的结构为: b1 int, a string, c int.

注意:对列的改变只会修改 Hive 的元数据,而不会改变实际数据。用户应该确定保证元数据定义和实际数据结构的一致性。

Add/Replace Columns

ALTER TABLE table_name ADD|REPLACE
  COLUMNS (col_name data_type [COMMENT col_comment], ...)

ADD COLUMNS 允许用户在当前列的末尾增加新的列,但是在分区列之前。

REPLACE COLUMNS 删除以后的列,加入新的列。只有在使用 native 的 SerDE(DynamicSerDe or MetadataTypeColumnsetSerDe)的时候才可以这么做。

Loading files into table

当数据被加载至表中时,不会对数据进行任何转换。Load 操作只是将数据复制/移动至 Hive 表对应的位置。

Syntax:

LOAD DATA [LOCAL] INPATH ‘filepath‘ [OVERWRITE]
    INTO TABLE tablename
    [PARTITION (partcol1=val1, partcol2=val2 ...)]

Synopsis:

Load 操作只是单纯的复制/移动操作,将数据文件移动到 Hive 表对应的位置。

  • filepath 可以是:

    • 相对路径,例如:project/data1
    • 绝对路径,例如: /user/hive/project/data1
    • 包含模式的完整 URI,例如:hdfs://namenode:9000/user/hive/project/data1
  • 加载的目标可以是一个表或者分区。如果表包含分区,必须指定每一个分区的分区名。
  • filepath 可以引用一个文件(这种情况下,Hive 会将文件移动到表所对应的目录中)或者是一个目录(在这种情况下,Hive 会将目录中的所有文件移动至表所对应的目录中)。
  • 如果指定了 LOCAL,那么:
    • load 命令会去查找本地文件系统中的 filepath。如果发现是相对路径,则路径会被解释为相对于当前用户的当前路径。用户也可以为本地文件指定一个完整的 URI,比如:file:///user/hive/project/data1.
    • load 命令会将 filepath 中的文件复制到目标文件系统中。目标文件系统由表的位置属性决定。被复制的数据文件移动到表的数据对应的位置。
  • 如果没有指定 LOCAL 关键字,如果 filepath 指向的是一个完整的 URI,hive 会直接使用这个 URI。 否则:
    • 如果没有指定 schema 或者 authority,Hive 会使用在 hadoop 配置文件中定义的 schema 和 authority,fs.default.name 指定了 Namenode 的 URI。
    • 如果路径不是绝对的,Hive 相对于 /user/ 进行解释。
    • Hive 会将 filepath 中指定的文件内容移动到 table (或者 partition)所指定的路径中。
  • 如果使用了 OVERWRITE 关键字,则目标表(或者分区)中的内容(如果有)会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
  • 如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。

SELECT

Hive 不支持在WHERE 子句中的 IN,EXIST 或子查询。

基于Partition的查询

一般 SELECT 查询会扫描整个表(除非是为了抽样查询)。但是如果一个表使用 PARTITIONED BY 子句建表,查询就可以利用分区剪枝(input pruning)的特性,只扫描一个表中它关心的那一部分。

HAVING Clause

Hive 现在不支持 HAVING 子句。可以将 HAVING 子句转化为一个字查询,例如:

SELECT col1 FROM t1 GROUP BY col1 HAVING SUM(col2) > 10

可以用以下查询来表达:

SELECT col1 FROM (SELECT col1, SUM(col2) AS col2sum
  FROM t1 GROUP BY col1) t2
  WHERE t2.col2sum > 10

Join

Hive 只支持等值连接(equality joins)、外连接(outer joins)和(left semi joins)。Hive 不支持所有非等值的连接,因为非等值连接非常难转化到 map/reduce 任务。另外,Hive 支持多于 2 个表的连接。

如果join中多个表的 join key (b.key1)是同一个,则 join 会被转化为单个 map/reduce 任务,例如:

  SELECT a.val, b.val, c.val FROM a JOIN b
    ON (a.key = b.key1) JOIN c
    ON (c.key = b.key1)

而下面这个 join 被转化为 2 个 map/reduce 任务。因为 b.key1 用于第一次 join 条件,而 b.key2 用于第二次 join。

SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1)
  JOIN c ON (c.key = b.key2)

join 时,每次 map/reduce 任务的逻辑是这样的:reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统。这一实现有助于在 reduce 端减少内存的使用量。实践中,应该把最大的那个表写在最后(否则会因为缓存浪费大量内存)。例如:

 SELECT a.val, b.val, c.val FROM a
    JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)

所有表都使用同一个 join key(使用 1 次 map/reduce 任务计算)。Reduce 端会缓存 a 表和 b 表的记录,然后每次取得一个 c 表的记录就计算一次 join 结果,类似的还有下面这样,这里用了 2 次 map/reduce 任务。第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,然后用 c 表序列化。:

  SELECT a.val, b.val, c.val FROM a
    JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)

Join 发生在 WHERE 子句之前。如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写。这里面一个容易混淆的问题是表分区的情况:

  SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)
  WHERE a.ds=‘2009-07-07‘ AND b.ds=‘2009-07-07‘

会 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的记录。WHERE 从句中可以使用其他列作为过滤条件。但是,如前所述,如果 b 表中找不到对应 a 表的记录,b 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 b 表中不能找到匹配 a 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关了。解决的办法是在 OUTER JOIN 时使用以下语法:

 SELECT a.val, b.val FROM a LEFT OUTER JOIN b
  ON (a.key=b.key AND b.ds=‘2009-07-07‘ AND a.ds=‘2009-07-07‘)

这一查询的结果是预先在 join 阶段过滤过的,所以不会存在上述问题。这一逻辑也可以应用于 RIGHT 和 FULL 类型的 join 中。

LEFT SEMI JOIN 是 IN/EXISTS 子查询的一种更高效的实现。Hive 当前没有实现 IN/EXISTS 子查询,所以你可以用 LEFT SEMI JOIN 重写你的子查询语句。LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行。

  SELECT a.key, a.value
  FROM a
  WHERE a.key in
   (SELECT b.key
    FROM B);

可以被重写为:

 SELECT a.key, a.val
   FROM a LEFT SEMI JOIN b on (a.key = b.key)

随谈4整理结束

参考:http://www.oschina.net/question/12_7945

时间: 2024-11-25 11:47:43

hive深入的相关文章

学习Hive和Impala必看经典解析

Hive和Impala作为数据查询工具,它们是怎样来查询数据的呢?与Impala和Hive进行交互,我们有哪些工具可以使用呢? 我们首先明确Hive和Impala分别提供了对应查询的接口: (1)命令行shell: 1. Impala:impala shell 2. Hive:beeline(早期hive的命令行版本是hive shell,现在基本不使用) (2)Hue Web UI: 1.Hue里面提供了 Hive查询编辑器 2.Hue里面提供了Impala查询编辑器 3.Hue里面提供了元数

Hive报错 Failed with exception java.io.IOException:java.lang.IllegalArgumentException: java.net.URISyntaxException: Relative path in absolute URI: ${system:user.name%7D

报错信息如下 Failed with exception java.io.IOException:java.lang.IllegalArgumentException: java.net.URISyntaxException: Relative path in absolute URI: ${system:user.name%7D 解决方法: 编辑 hive-site.xml 文件,添加下边的属性 <property> <name>system:java.io.tmpdir<

Spark 整合hive 实现数据的读取输出

实验环境: linux centOS 6.7 vmware虚拟机 spark-1.5.1-bin-hadoop-2.1.0 apache-hive-1.2.1 eclipse 或IntelJIDea 本次使用eclipse. 代码: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import o

Hive JDBC——深入浅出学Hive

第一部分:搭建Hive JDBC开发环境 搭建:Steps ?新建工程hiveTest ?导入Hive依赖的包 ?Hive  命令行启动Thrift服务 ?hive --service hiveserver & 第二部分:基本操作对象的介绍 Connection ?说明:与Hive连接的Connection对象 ?Hive 的连接 ?jdbc:hive://IP:10000/default" ?获取Connection的方法 ?DriverManager.getConnection(&q

Hadoop Hive基础sql语法

Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把己写的mapper 和reducer 作为插件来支持

hive安装以及hive on spark

spark由于一些链式的操作,spark 2.1目前只支持hive1.2.1 hive 1.2安装 到http://mirror.bit.edu.cn/apache/hive/hive-1.2.1/ 网址下载hive1.2.1的部署包 2.配置系统环境变量/etc/profile export HIVE_HOME=/opt/hive-1.2.1 export PATH=$PATH:$HIVE_HOME/bin source /etc/profile 使刚刚的配置生效 3. 解压 tar -xvf

Hive UDTF开发指南

在这篇文章中,我们将深入了解用户定义表函数(UDTF),该函数的实现是通过继承org.apache.Hadoop.hive.ql.udf.generic.GenericUDTF这个抽象通用类,UDTF相对UDF更为复杂,但是通过它,我们读入一个数据域,输出多行多列,而UDF只能输出单行单列. 代码 文章中所有的代码可以在这里找到:hive examples.GitHub repository 示例数据 首先先创建一张包含示例数据的表:people,该表只有name一列,该列中包含了一个或多个名字

Hive入门到剖析(二)

5 Hive参数 hive.exec.max.created.files 说明:所有hive运行的map与reduce任务可以产生的文件的和 默认值:100000 hive.exec.dynamic.partition 说明:是否为自动分区 默认值:false hive.mapred.reduce.tasks.speculative.execution 说明:是否打开推测执行 默认值:true hive.input.format 说明:Hive默认的input format 默认值: org.a

Hive入门到剖析(一)

1 Hive简介 1.1 Hive定义 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 本质是将SQL转换为MapReduce程序. 1.2 为什么使用Hive 1.面临的问题 人员学习成本太高 项目周期要求太短 我只是需要一个简单的环境 MapReduce  如何搞定 复杂查询好难 Join如何实现 2.为什么要使用Hive 操作接口采用类SQL语法,提供快速开发的能力 避免了去写MapReduce,减少开发人员的学习成本 扩展

hive创建表失败,drop表失败

一.hive创建表失败,报错: CREATE TABLE pokes (foo INT, bar STRING);FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataStoreException: An exception was thrown while adding/validating class(