聚类算法学习-kmeans,kmedoids,GMM

GMM参考这篇文章:Link

简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概率,又称作 soft assignment 。

通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 ,得到 log-likelihood function 。

因此也有和 K-means 同样的问题──并不能保证总是能取到全局最优,如果运气比较差,取到不好的初始值,就有可能得到很差的结果。

对于 K-means 的情况,我们通常是重复一定次数然后取最好的结果,不过 GMM 每一次迭代的计算量比 K-means 要大许多,一个更流行的做法是先用 K-means (已经重复并取最优值了)得到一个粗略的结果,然后将其作为初值(只要将 K-means 所得的 centroids 传入 gmm 函数即可),再用 GMM 进行细致迭代。

K-medoids参考这篇文章:Link

k-means 和 k-medoids 之间的差异就类似于一个数据样本的均值 (mean) 和中位数 (median) 之间的差异:前者的取值范围可以是连续空间中的任意值,而后者只能在给样本给定的那些点里面选。

一个最直接的理由就是 k-means 对数据的要求太高了,它使用欧氏距离描述数据点之间的差异 (dissimilarity) ,从而可以直接通过求均值来计算中心点。这要求数据点处在一个欧氏空间之中。

然而并不是所有的数据都能满足这样的要求,对于数值类型的特征,比如身高,可以很自然地用这样的方式来处理,但是类别 (categorical) 类型的特征就不行了。举一个简单的例子,如果我现在要对犬进行聚类,并且希望直接在所有犬组成的空间中进行,k-means 就无能为力了,因为欧氏距离  在这里不能用了:一只 Samoyed 减去一只 Rough Collie 然后在平方一下?天知道那是什么!再加上一只 German Shepherd Dog 然后求一下平均值?根本没法算,k-means 在这里寸步难行!

最常见的方式是构造一个 dissimilarity matrix  来代表 ,其中的元素  表示第  只狗和第  只狗之间的差异程度,例如,两只 Samoyed 之间的差异可以设为 0 ,一只 German Shepherd Dog 和一只 Rough Collie 之间的差异是 0.7,和一只 Miniature Schnauzer 之间的差异是 1 ,等等。

除此之外,由于中心点是在已有的数据点里面选取的,因此相对于 k-means 来说,不容易受到那些由于误差之类的原因产生的 Outlier 的影响,更加 robust 一些。

就会发现,从 k-means 变到 k-medoids ,时间复杂度陡然增加了许多:在 k-means 中只要求一个平均值  即可,而在 k-medoids 中则需要枚举每个点,并求出它到所有其他点的距离之和,复杂度为  。

同样也可能陷入局部最优:

然后作者用了一个文本分类来结束文章。里面还提到了一个 N-Gram:

在 N-gram-based text categorization 这篇 paper 中描述了一种计算由不同语言写成的文档的相似度的方法。一个(以字符为单位的) N-gram 就相当于长度为 N 的一系列连续子串。例如,由 hello 产生的 3-gram 为:hel、ell 和 llo ,有时候还会在划分 N-gram 之前在开头和末尾加上空格(这里用下划线表示):_he、hel、ell、llo、lo_ 和 o__ 。按照 Zipf’s law :

The nth most common word in a human language text occurs with a frequency inversely proportional to n.

这里我们用 N-gram 来代替 word 。这样,我们从一个文档中可以得到一个 N-gram 的频率分布,按照频率排序一下,只保留频率最高的前 k 个(比如,300)N-gram,我们把叫做一个“Profile”。正常情况下,某一种语言(至少是西方国家的那些类英语的语言)写成的文档,不论主题或长短,通常得出来的 Profile 都差不多,亦即按照出现的频率排序所得到的各个 N-gram 的序号不会变化太大。这是非常好的一个性质:通常我们只要各个语言选取一篇(比较正常的,也不需要很长)文档构建出一个 Profile ,在拿到一篇未知文档的时候,只要和各个 Profile 比较一下,差异最小的那个 Profile 所对应的语言就可以认定是这篇未知文档的语言了——准确率很高,更可贵的是,所需要的训练数据非常少而且容易获得,训练出来的模型也是非常小的。

时间: 2024-08-15 13:34:24

聚类算法学习-kmeans,kmedoids,GMM的相关文章

浅谈聚类算法(K-means)

聚类算法(K-means)目的是将n个对象根据它们各自属性分成k个不同的簇,使得簇内各个对象的相似度尽可能高,而各簇之间的相似度尽量小. 而如何评测相似度呢,采用的准则函数是误差平方和(因此也叫K-均值算法): 其中,E是数据集中所有对象的平方误差和,P是空间中的点,表示给定对象,mi为簇Ci的均值.其实E所代表的就是所有对象到其所在聚类中心的距离之和.对于不同的聚类,E的大小肯定是不一样的,因此,使E最小的聚类是误差平方和准则下的最优结果. 选取代表点用如下几个办法: (1)凭经验.根据问题性

[数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现

聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记录)的集合,将这些对象划分为多个组或者“聚簇”,从而使同组内的对象间比较相似而不同组对象间差异比较大:换言之,聚类算法就是将相似的对象放到同一个聚簇中,而将不相似的对象放到不同的聚簇中.由于在聚类过程中不使用到类别标签,所以相似性的概念要基于对象的属性进行定义.应用不同则相似性规则和聚类算法一般不太

聚类算法之K-means 、 K中心点、hierarchical methods

聚类算法有以下几类: 一 层次方法 层次方法创建给定数据对象集的层次分解.根据层次的分解的形成方式,层次的方法又可以分为凝聚和分裂方法. 凝聚法:自底向上.开始将每个对象形成单独的组,然后层次合并相似的组,直到所有的组合合并成一个或者满足某个终止条件. 分裂法:自顶向下.开始将所有对象置于一个簇中,每次迭代,簇分裂成更小的簇,直到每个对象都各在一个簇中或者满足某个终止条件. 二 划分方法 给定n个对象或者数据元组的数据库,划分方法构造数据的k个划分,每个划分为一个簇,k<n.给定要构造的划分数组

机器学习(6)之聚类算法(k-means\Canopy\层次聚类\谱聚类)

目录 1 聚类的定义 1.1 距离公式(相似度) 1.2 聚类的思想 2 K-means算法 2.1 K-means算法的思考 2.2 总结 3 二分K-Means算法 4 K-Means++算法 4.1 K-Means||算法 5 Canopy算法 5.1 应用场景 6 Mini Batch K-Means算法 7 层次聚类方法 7.1 AGNES算法中簇间距离 7.2 层次聚类优化算法 8 密度聚类 8.1 DBSCAN算法 8.1.1 基本概念 8.1.2 算法流程 8.1.3 DBSCA

聚类算法:K-means 算法(k均值算法)

k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设定,例如可选开始的$K$个模式样本的向量值作为初始聚类中心.      第二步:逐个将需分类的模式样本$\{x\}$按最小距离准则分配给$K$个聚类中心中的某一个$z_j(1)$.假设$i=j$时, \[D_j (k) = \min \{ \left\| {x - z_i (k)} \right\|

K-Means 聚类算法

K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法.聚类就是将数据对象分组成为多个类或者簇 (Cluster),使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大. 划分(Partitioning):聚类可以基于划分,也可以基于分层.划分即将对象划分成不同的簇,而分层是将对象分等级. 排他(Exclu

关于k-means聚类算法的matlab实现

在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是依据样本本身的相似性进行划分为相似的类簇.     而分类是已知样本分类,则须要将样本特征和分类特征进行匹配,进而将每一个样本归入给出的特定的类. 因为本文是对聚类算法中的k-means算法的实现,所以接下来主要进行一些聚类算法的介绍. 聚类算法包含多种,可按例如以下分配: 1.划分法:基于此种思想的聚类算法包含 k-means,PAM,CLARA,CLARAN

K-Means 聚类算法原理分析与代码实现

前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比

03-01 K-Means聚类算法

目录 K-Means聚类算法 一.K-Means聚类算法学习目标 二.K-Means聚类算法详解 2.1 K-Means聚类算法原理 2.2 K-Means聚类算法和KNN 三.传统的K-Means聚类算法流程 3.1 输入 3.2 输出 3.3 流程 四.K-Means初始化优化之K-Means++ 五.K-Means距离计算优化之elkan K-Means 六.大数据优化之Mini Batch K-Means 七.K-Means聚类算法优缺点 7.1 优点 7.2 缺点 八.小结 更新.更全