ZOJ 2562 HDU 4228 反素数

反素数:

对于任何正整数x,起约数的个数记做g(x).例如g(1)=1,g(6)=4.

如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数.

ZOJ 2562 反素数

因为写了POJ 2886的线段树,然后里面有反素数,以前没遇到过,所以先搞这两题普及一下知识再说。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<set>
#include<cmath>
#include<bitset>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define INF 510010
#define maxn 400010
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
ll prime[20]={2,3,5,7,11,13,17,19,23,29,31,37,39,41,43,47,53};
ll n;
ll bestcurr;//bestcurr 相同最大因数个数中值最小的数
ll largecnt;//largecnt:n范围内最大的因数个数
void getarcprime(ll curr,int cnt,int limit,int k)
{
    if(curr>n) return ;
    if(largecnt<cnt)//此时枚举到的因数个数比之前记录的最大的因数个数要大,就替换最大因数个数
    {
        largecnt=cnt;
        bestcurr=curr;
    }
    if(largecnt==cnt && bestcurr>curr)//替换最优值
        bestcurr=curr;
    ll temp=curr;
    for(int i=1;i<=limit;i++)
    {
        temp=temp*prime[k];
        if(temp>n) return;
        getarcprime(temp,cnt*(i+1),i,k+1);
    }
}
int main()
{
    while(scanf("%lld",&n)!=EOF)
    {
        bestcurr=0;
        largecnt=0;
        getarcprime(1,1,50,0);
        printf("%lld\n",bestcurr);
    }
    return 0;
}

HDU 4228

这题就是上题的延伸吧,就是求出每个然后打表。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<set>
#include<cmath>
#include<bitset>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define INF 510010
#define maxn 400010
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
ll p[1010];
ll prime[30]= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
void getartprime(ll cur,int cnt,int limit,int k)
{
    //cur:当前枚举到的数;
    //cnt:该数的因数个数;
    //limit:因数个数的上限;2^t1*3^t2*5^t3……t1>=t2>=t3……
    //第k大的素数
    if(cur>(1LL<<60) || cnt>150) return ;
    if(p[cnt]!=0 && p[cnt]>cur)//当前的因数个数已经记录过且当时记录的数比当前枚举到的数要大,则替换此因数个数下的枚举到的数
        p[cnt]=cur;
    if(p[cnt]==0)//此因数个数的数还没有出现过,则记录
        p[cnt]=cur;
    ll temp=cur;
    for(int i=1; i<=limit; i++) //枚举数
    {
        temp=temp*prime[k];
        if(temp>(1LL<<60)) return;
        getartprime(temp,cnt*(i+1),i,k+1);
    }
}
int main()
{
    int n;
    getartprime(1,1,75,0);
    for(int i=1; i<=75; i++)
    {
        if(p[i*2-1]!=0 && p[i*2]!=0)
            p[i]=min(p[i*2-1],p[i*2]);
        else if(p[i*2]!=0) p[i]=p[i*2];
        else p[i]=p[i*2-1];
    }
    while(scanf("%d",&n),n)
        printf("%I64d\n",p[n]);
    return 0;
}

ZOJ 2562 HDU 4228 反素数

时间: 2024-10-23 08:38:37

ZOJ 2562 HDU 4228 反素数的相关文章

Zoj 2562 More Divisors (反素数)

http://blog.csdn.net/whyorwhnt/article/details/19208535 http://blog.sina.com.cn/s/blog_893f611401016h84.html 看了老半天了,还是没完全看懂,暂搁置 756的约数个数: 756=2^2*3^3*7^1 (2+1)*(3+1)*(1+1)=24 这个逻辑我是懂的,算法还是没太明白 是不是要先去看些基础些的东西!!

HDU 2521 反素数

反素数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4238    Accepted Submission(s): 2456 Problem Description 反素数就是满足对于任意i(0<i<x),都有g(i)<g(x),(g(x)是x的因子个数),则x为一个反素数.现在给你一个整数区间[a,b],请你求出该区间的x使

ZOJ 1562 More Divisors 反素数

最裸的反素数问题.求不大于N的数约数最多的数是多少,如果有多个求最小值. 设x的约数个数为g(x),如果有某个正整数a有对于任意0<i<a有g(i)<g(a),则称a为反素数. g(x)的计算方法,先分解质因子x=a^b*c^d*e^f- g(x)=(b+1)*(d+1)*(f+1),即指数+1的乘积 反素数有性质: 一个反素数的质因子必然是从2开始的连续质数 2^t1*3^t2*5^t3*7^t4.....必然有t1>=t2>=t3>=.... 有了这些性质之后,就可

hdu 2521 反素数(打表)

反素数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5723    Accepted Submission(s): 3355 Problem Description 反素数就是满足对于任意i(0<i<x),都有g(i)<g(x),(g(x)是x的因子个数),则x为一个反素数.现在给你一个整数区间[a,b],请你求出该区间的x使

HDOJ(HDU) 2521 反素数(因子个数~)

Problem Description 反素数就是满足对于任意i(0< i < x),都有g(i) < g(x),(g(x)是x的因子个数),则x为一个反素数.现在给你一个整数区间[a,b],请你求出该区间的x使g(x)最大. Input 第一行输入n,接下来n行测试数据 输入包括a,b, 1<=a<=b<=5000,表示闭区间[a,b]. Output 输出为一个整数,为该区间因子最多的数.如果满足条件有多个,则输出其中最小的数. Sample Input 3 2 3

ZOJ 2562 反素数

在讲解反素数之前,我们先来看反素数的概念. 反素数的定义:对于任何正整数,其约数个数记为,例如,如果某个正整数满足:对任意的正整 数,都有,那么称为反素数. 从反素数的定义中可以看出两个性质: (1)一个反素数的所有质因子必然是从2开始的连续若干个质数,因为反素数是保证约数个数为的这个数尽量小 (2)同样的道理,如果,那么必有 在ACM竞赛中,最常见的问题如下: (1)给定一个数,求一个最小的正整数,使得的约数个数为 (2)求出中约数个数最多的这个数 从上面的性质中可以看出,我们要求最小的,它的

HDU 4228 Flooring Tiles 反素数

推出了结论,万万没想到最后用搜索.. 还想dp来着.. #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <math.h> #include <set> #include <vector> #include <map> using namespace std; #define ll lon

HDU 4228 Flooring Tiles 反素数的应用

给你一个数N,找出一个最小的可以拆分成N种乘积表达形式的数x 比如N=2,6可以拆成2x3或者1x6两种,但不是最小的,最小的是4可以拆成1x4,2x2两种 首先可以肯定的是x必然有N*2或者是N*2-1(完全平方的情况)个约数 利用求反素数的过程求出约数为N*2和N*2-1个的最小的数 #include <cstdio> #include <sstream> #include <fstream> #include <cstring> #include &l

zoj 2526 反素数 附上个人对反素数性质的证明

反素数的定义:对于任何正整数,其约数个数记为,例如,如果某个正整数满足:对任意的正整 数,都有,那么称为反素数. 从反素数的定义中可以看出两个性质: (1)一个反素数的所有质因子必然是从2开始的连续若干个质数,因为反素数是保证约数个数为的这个数尽量小 (2)同样的道理,如果,那么必有 个人理解性证明: 对(1)假设不是从2开始,那么假设n的最小素因素是k,把k换成2,2的次数仍等于k的次数,得到N,可知,N<n,并且f(n)==f(N),与n是反素数矛盾 对(2)假设ti<tj   ti,tj