POJ 1276 Cash Machine 多重背包--二进制优化

点击打开链接

Cash Machine

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 28337   Accepted: 10113

Description

A Bank plans to install a machine for cash withdrawal. The machine is able to deliver appropriate @ bills for a requested cash amount. The machine uses exactly N distinct bill denominations, say Dk, k=1,N, and for each denomination Dk the machine has a supply
of nk bills. For example,

N=3, n1=10, D1=100, n2=4, D2=50, n3=5, D3=10

means the machine has a supply of 10 bills of @100 each, 4 bills of @50 each, and 5 bills of @10 each.

Call cash the requested amount of cash the machine should deliver and write a program that computes the maximum amount of cash less than or equal to cash that can be effectively delivered according to the available bill supply of the machine.

Notes:

@ is the symbol of the currency delivered by the machine. For instance, @ may stand for dollar, euro, pound etc.

Input

The program input is from standard input. Each data set in the input stands for a particular transaction and has the format:

cash N n1 D1 n2 D2 ... nN DN

where 0 <= cash <= 100000 is the amount of cash requested, 0 <=N <= 10 is the number of bill denominations and 0 <= nk <= 1000 is the number of available bills for the Dk denomination, 1 <= Dk <= 1000, k=1,N. White spaces can occur freely between the numbers
in the input. The input data are correct.

Output

For each set of data the program prints the result to the standard output on a separate line as shown in the examples below.

Sample Input

735 3  4 125  6 5  3 350
633 4  500 30  6 100  1 5  0 1
735 0
0 3  10 100  10 50  10 10

Sample Output

735
630
0
0

Hint

The first data set designates a transaction where the amount of cash requested is @735. The machine contains 3 bill denominations: 4 bills of @125, 6 bills of @5, and 3 bills of @350. The machine can deliver the exact amount of requested cash.

In the second case the bill supply of the machine does not fit the exact amount of cash requested. The maximum cash that can be delivered is @630. Notice that there can be several possibilities to combine the bills in the machine for matching the delivered
cash.

In the third case the machine is empty and no cash is delivered. In the fourth case the amount of cash requested is @0 and, therefore, the machine delivers no cash.

Source

Southeastern Europe 2002

有n种不同面值的货币,告诉你每种货币的面值和数量,找出利用这些货币可以凑成的最接近且小于等于给定的数字cash的金额。

多重背包问题。

可以转换成01背包,再进行二进制优化,时间复杂度就由O(V*Σn[i])降为O(V*Σlog n[i])。详见背包九讲。

//600K	79MS
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[100007];
int weight[10007],value[10007];
int main()
{
    int sum,n;
    while(scanf("%d%d",&sum,&n)!=EOF)
    {
        int a,b,num=0;
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)//进行二分优化
        {
            scanf("%d%d",&a,&b);
            for(int j=1;j<=a;j<<=1)
            {
                value[num]=weight[num]=j*b;
                num++;
                a-=j;
            }
            if(a>0)
            {
                value[num]=weight[num]=a*b;
                num++;
            }
        }
        for(int i=0;i<num;i++)
            for(int j=sum;j>=weight[i];j--)
                dp[j]=max(dp[j-weight[i]]+value[i],dp[j]);
         printf("%d\n",dp[sum]);
    }
    return 0;
}

背包九讲中的二进制优化:

//524K	63MS
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[100007],num[17],weight[17];
int sum;
void ZeroOnePack(int cost)
{
    for(int i=sum;i>=cost;i--)
        dp[i]=max(dp[i],dp[i-cost]+cost);
}
void CompletePack(int cost)
{
    for(int i=cost;i<=sum;i++)
        dp[i]=max(dp[i],dp[i-cost]+cost);
}
void MultiplePack(int count,int cost)
{
    if(count*cost>sum)CompletePack(cost);
    else
    {
        int k=1;
        while(k<count)
        {
            ZeroOnePack(k*cost);
            count-=k;
            k<<=1;
        }
        ZeroOnePack(count*cost);
    }
}
int main()
{
    int n;
    while(scanf("%d%d",&sum,&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
            scanf("%d%d",&num[i],&weight[i]);
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
            MultiplePack(num[i],weight[i]);
        printf("%d\n",dp[sum]);
    }
}

时间: 2024-10-05 05:32:23

POJ 1276 Cash Machine 多重背包--二进制优化的相关文章

poj 1276 Cash Machine (多重背包)

链接:poj 1276 题意:已知金额cash,给定几种不同面值的货币的数量及面值,求利用给定的货币可以凑成 小于等于cash的金额的最大值 分析:因为每种货币的面值及数量已知,可以将其转化为多重背包,背包的容量即为cash, 每个物品的价值及费用都为每种货币的面值. 多重背包可以转化为01背包,不过这样会超时,为了避免这样,可以转化为完全背包和二进制思想的01背包 #include<stdio.h> #include<string.h> int f[100010],v; int

POJ 1276 Cash Machine(多重背包的二进制优化)

题目网址:http://poj.org/problem?id=1276 思路: 很明显是多重背包,把总金额看作是背包的容量. 刚开始是想把单个金额当做一个物品,用三层循环来 转换成01背包来做.T了-- 后面学习了 用二进制来处理数据. 简单地介绍一下二进制优化:?(? ? ??)  假设数量是8,则可以把它看成是1,2,4,1的组合,即这4个数的组合包括了1-8的所有取值情况.这是为什么呢?将它们转换成二进制再观察一下: 1:1 2:10 4:100 1:1 二进制都只有0,1.所以1,2,4

POJ 1014 Dividing【多重背包+二进制优化】

大意: 价值1, 2, 3, ……, 6的物品分别a1, a2, ……, a5, a6件 问能否把这些物品分成两份,使其具有相同的价值(所有物品必须全部用上) 分析: 给个物品有多件,即多重背包 只要看能不能将这些物品拼成   总价值 的 一半就可以了 转化为01背包是用二进制优化,否则会超时 代码: 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std;

POJ 1014 Dividing(多重背包+二进制优化)

http://poj.org/problem?id=1014 题意:6个物品,每个物品都有其价值和数量,判断是否能价值平分. 思路: 多重背包.利用二进制来转化成0-1背包求解. 1 #include<iostream> 2 #include<string> 3 #include<cstring> 4 #include<cstdio> 5 #include<algorithm> 6 using namespace std; 7 8 const i

POJ 1276 Cash Machine 背包题解

典型的多重背包的应用题解. 可以使用二进制优化,也可以使用记录当前物品的方法解,速度更加快. const int MAX_CASH = 100001; const int MAX_N = 11; int tbl[MAX_CASH], nums[MAX_N], bills[MAX_N], cash, n; int bag() { if (cash <= 0 || n <= 0) return 0; memset(tbl, 0, sizeof(int) * (cash+1)); for (int

HDU 1059 多重背包+二进制优化

Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 16909    Accepted Submission(s): 4729 Problem Description Marsha and Bill own a collection of marbles. They want to split the collection

[多重背包+二进制优化]HDU1059 Dividing

题目链接 题目大意: 两个人要把一堆宝珠,在不能切割的情况下按照价值平分,他们把宝珠分成6种价值,每种价值的宝珠n个. n<=200000 思考: 首先如果加和下来的价值是一个偶数 那么还分毛啊,直接gg. 之后多重背包二进制优化 转换为 01背包. 我们可以把价值 同时当做宝珠的空间和价值. 那么我们现在要求的是 在 空间为一半的情况下,能否找到价值为 一半的情况. 1 #include <cstdio> 2 #include <algorithm> 3 #include

14年省赛---多重部分和问题(多重背包+二进制优化)

1210: F.多重部分和问题 时间限制: 1 Sec  内存限制: 64 MB提交: 18  解决: 14 题目描述 有n种不同大小的数字,每种各个.判断是否可以从这些数字之中选出若干使它们的和恰好为K. 输入 首先是一个正整数T(1<=T<=100)接下来是T组数据 每组数据第一行是一个正整数n(1<=n<=100),表示有n种不同大小的数字 第二行是n个不同大小的正整数ai(1<=ai<=100000)第三行是n个正整数mi(1<=mi<=100000

台州 OJ 2537 Charlie&#39;s Change 多重背包 二进制优化 路径记录

描述 Charlie is a driver of Advanced Cargo Movement, Ltd. Charlie drives a lot and so he often buys coffee at coffee vending machines at motorests. Charlie hates change. That is basically the setup of your next task. Your program will be given numbers