斐波那契数列多种实现方法

#include "iostream"
#include "queue"
#include "cmath"
using namespace std;
int fib1(int index)     //递归实现
{
 if(index<1)
 {
  return -1;
 }
 if(index==1 || index==2)
  return 1;
 return fib1(index-1)+fib1(index-2);
}
int fib2(int index)     //数组实现
{
 if(index<1)
 {
  return -1;
 }
 if(index<3)
 {
  return 1;
 }
 int *a=new int[index];
 a[0]=a[1]=1;
 for(int i=2;i<index;i++)
  a[i]=a[i-1]+a[i-2];
 int m=a[index-1];
 delete a;         //释放内存空间
 return m;
}
int fib3(int index)           //借用vector<int>实现
{
 if(index<1)
 {
  return -1;
 }
 vector<int> a(2,1);      //创建一个含有2个元素都为1的向量
 a.reserve(3);
 for(int i=2;i<index;i++)
 {
  a.insert(a.begin(),a.at(0)+a.at(1));
  a.pop_back();
 }
 return a.at(0);
}
int fib4(int index)       //队列实现
{
 if(index<1)
 {
  return -1;
 }
 queue<int>q;
 q.push(1);
 q.push(1);
 for(int i=2;i<index;i++)
 {
  q.push(q.front()+q.back());
  q.pop();
 }
 return q.back();
}
int fib5(int n)          //迭代实现
{
 int i,a=1,b=1,c=1;
 if(n<1)
 {
  return -1;
 }
 for(i=2;i<n;i++)
 {
  c=a+b;     //辗转相加法(类似于求最大公约数的辗转相除法)
  a=b;
  b=c;
 }
 return c;
}
int fib6(int n)
{
 double gh5=sqrt((double)5);
 return (pow((1+gh5),n)-pow((1-gh5),n))/(pow((double)2,n)*gh5);
}
int main(void)
{
 printf("%d\n",fib3(6));
 system("pause");
 return 0;
}
时间: 2024-09-30 04:51:20

斐波那契数列多种实现方法的相关文章

3.斐波那契数列的高效方法

斐波那契数列的递归方法众所周知,但是递归也不是一个高效的解决方法. 从下边的调用图可以看出来: 其中,对于1和2的计算重复了多次. 因此如果对数列中已经计算过的数字进行存储这样就可以只计算一次每个数值,达到高效的目的,计算时间也相对减少了. 1 known = {0:0,1:1} 2 3 def fibonacci(n): 4 if n in known: 5 return known[n] 6 7 res = fibonacci(n-1)+fibonacci(n-2) 8 known[n] =

斐波拉契数列、楼梯问题、奶牛问题

斐波拉契数列:波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)[from 百度百科 http://baike.baidu.com/link?url=8LKtKTAllUGDMe610zIO0DAjS3CCeAOpXiCFvH_Y47_I_XDRgzyGcrzsodd1OHO726FJNPWkqzkQC7PIuGu_

斐波那契数列的$O(\logN)$求法

欢迎来访 介绍求斐波那契数列时间复杂度为\(O(\log N)\)的做法之前,我们先看一下快速幂. 快速幂 题目链接 快速幂是数论中非常基础的算法. 当我们要求\(a^b mod p, (1 \le a, b, p \le 10^9)\)时,如果是朴素做法,时间复杂度为\(O(N)\)显然会超时,而快速幂能够做到的是将时间复杂度降到\(O(\log b)\). 做法 首先预处理出:\(a^{2^0}, a^{2^1}, a^{2^2}, a^{2^3}, ..., , a^{2^{\log b}

斐波拉契数列的递归、非递归、公式法多种方法实现

实现斐波拉契数列:1,1,2,3,5,8...,当n>=3时,f(n)=f(n-1)+f(n-2). 解:求解斐波拉契数列方法很多,这里提供了4种实现方法和代码,由于第5种数学公式方法代码太过繁琐,只做简单介绍 方法一:递归调用,每次递归的时候有大量重复计算,效率低,可将其调用的过程转化成一颗二叉树进行分析,二叉树的总结点个数不超过(2^n-1)个,由于其是不完全二叉树,那么函数计算的次数必小于(2^n-1),时间复杂度为O(2^n):递归调用的深度为n,空间复杂度为O(n) 方法二:非递归数组

用递归和非递归的方法输出斐波那契数列的第n个元素(C语言实现)

费波那契数列(意大利语:Successione di Fibonacci),又译为费波拿契数.斐波那契数列.费氏数列.黄金分割数列. 在数学上,费波那契数列是以递归的方法来定义: {\displaystyle F_{0}=0} {\displaystyle F_{1}=1} {\displaystyle F_{n}=F_{n-1}+F_{n-2}}(n≧2) 用文字来说,就是费波那契数列由0和1开始,之后的费波那契系数就是由之前的两数相加而得出.首几个费波那契系数是: 0, 1, 1, 2, 3

c语言:写一个函数,输入n,求斐波拉契数列的第n项(5种方法,层层优化)

写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列:1,1,2,3,5,8...,当n大于等于3时,后一项为前面两项之和. 解:方法1:从斐波拉契数列的函数定义角度编程 #include<stdio.h> int fibonacci(int n) { int num1=1, num2=1, num3=0,i; if (n <= 2) { printf("斐波拉契数列的第%d项为:%d\n",n,num1); } else { for (i = 2; i <

数值算法:无约束优化之一维搜索方法之黄金分割法、斐波那契数列法

目标函数为一元单值函数f:R->R的最小化优化问题,一般不会单独遇到,它通常作为多维优化问题中的一个部分出现,例如梯度下降法中每次最优迭代步长的估计. 一维搜索方法是通过迭代方式求解的,这不同于我们人脑的直接通过解表达式求解方法.迭代算法是从初始搜索点x(0)出发,产生一个迭代序列x(1),x(2),....在第k=0,1,2,...次迭代中,通过当前迭代点x(k)和目标函数 f 构建下一个迭代点x(k+1).某些算法可能只需要用到迭代点处的目标函数值,而另一些算法还可能用到目标函数的导数 f'

斐波拉契数列的python多种完美实现

强大,优雅,深入研究python后的重大发现.          让我们一起领略一下. 提到斐波拉契数列的实现,你可能首先会想到递归: def fibo(i): if i==0 or i==1: return 1 else: return fibo(i-1)+fibo(i-2) PS:递归有很多重复计算,比方说你计算f(5)时要去计算f(4)和f(3),而计算f(4)时又要去计算f(3),这样f(3)就重复计算了 完美实现方案一: 完美实现方案二: 完美实现方案三(参考python cookbo

Talking About斐波那契数列(三种实现方法)

一直学习数据结构和算法,虽然学的没有太好,但还是觉得应该做一些有意思的程序来实现以下~牛客网(大哥推荐,还有就是..不要问我大哥是谁~~)有剑指Offer系列很多的题目,不管是大神还是..应该去做一下,感受编程的魅力~~(首先承认自己还是有很多不足的地方,但尽量去完善每一行代码~)  废话少说,代码搞起~ import java.util.Scanner; /** * 现在要求输入一个整数n,请你输出斐波那契数列的第n项. * 斐波那契数列,又称黄金分割数列,指的是这样一个数列 0, 1, 1,