概率论与数理统计-ch8-假设检验

1、假设检验

在总体的分布函数未知或只知其形式、不知其参数的情况下,为了推断总体的某些未知特性,提出关于总体的假设,然后根据样本数据对提出的假设做出接受或拒绝的决策。

步骤:

提出原假设--确定建立在样本基础上的检验统计量--利用实测样本计算统计量的值--判断该值是否落入在一定显著性水平下的拒绝域--给出接受或拒绝原假设的结论

在进行假设检验时,会犯两种错误,弃真和存伪。在样本容量一定的情况下,我们只对犯第一类错误的概率加以控制(让犯第一类错误的概率不超过α),而不考虑犯第二类错误的概率的检验,称为显著性检验。

  弃真=p{当H0为真时拒绝H0}≤α

一个事件如果发生的概率很小的话,那么它在一次试验中是几乎不可能发生的,但在多次重复试验中几乎是必然发生的,数学上称之小概率原理。

假设检验的基本思想是小概率反证法思想。在原假设基础上,小概率事件是不可能发生的,但在一次试验中,小概率事件发生了,那么我们有充分理由怀疑原假设的准确性。

设总体X服从N(μ,σ)分布,样本X1,X2,...,Xn

H0:μ=μ0

假设原假设成立,那么不应该太大,如果太大则会怀疑原假设的正确性而拒绝原假设。

p{当H0为真时拒绝H0}=

为z检验统计量,α为显著性水平。为临界点,落入的区间为拒绝域。

2、正态总体均值的假设检验

(1)单个总体N(μ,σ)均值μ的检验

    σ已知,z检验法(即:建立z检验统计量)

    σ未知,t检验法

(2)两个正态总体均值差的检验(μ12

    t检验法

(3)基于成对数据的检验

    t检验法(对于两种产品、两种方法的差异)

3、正态总体方差的假设检验

(1)单个总体的情况

    μ未知,卡方检验法

(2)两个总体的情况(σ12/σ22

    μ1,μ2未知,F检验法

4、置信区间与假设检验的关系

时间: 2024-10-08 10:22:04

概率论与数理统计-ch8-假设检验的相关文章

【概率论与数理统计】假设检验

一.基本概念 假设检验和参数估计解决的是不同的问题,参数估计是对参数$\theta$作出一个估计比如均值为$\mu$,而假设检验则是对估计的检验,比如均值真的是$\mu$嘛? 1. 定义 假设检验指的是使用统计学的方法判定某假设为真的概率. 通常假设检验包含以下四个步骤: 1.1 形成零假设null hypothesis $H_0$和备择假设alternative hypothesis$H_a$ 1.2 确定可以用来判断零假设真假的检验统计参数(test statistic) 1.3 计算P-v

【概率论与数理统计】小结10-1 - 假设检验概述

注:终于写到最激动人心的部分了.假设检验应该是统计学中应用最广泛的数据分析方法,其中像"P值"."t检验"."F检验"这些如雷贯耳的名词都来自假设检验这一部分.我自己刚开进入生物信息学领域,用的最多的就是"利用t检验来判断某个基因在实验组和对照组中表达量的差异是否显著".此外,对"P值"真正含义的探究也开启了自学概率论与数理统计之路.因此无论是应用价值,还是对我学习统计学的影响,这部分的内容都是意义非凡的.

【概率论与数理统计】小结1 - 基本概念

注:其实从中学就开始学习统计学了,最早的写"正"字唱票(相当于寻找众数),就是一种统计分析的过程.还有画直方图,求平均值,找中位数等.自己在学校里并没有完整系统的学习过概率论和数理统计,直到在工作中用到,才从最初的印象中,逐渐把这门学科与整个数学区分开来.自从认识到这门学科在自己从事的工作(数据分析)中所处的重要地位,真没少花时间在这方面的学习上.从最初的p值的含义,到各种分布,假设检验,方差分析...有的概念看过很多遍,但还是没有理解透彻:有的看过,长时间不用,又忘记了.总之,这一路

概率论与数理统计学习笔记

第一章 随机事件与概率 第二章 随机变量及其分布 第三章 多维随机变量及其分布 第四章 大数定律与中心极限定理 第五章 统计量及其分布 第六章 参数估计 第七章 假设检验 第八章 方差分析与回归分析 第一章 随机事件与概率 1.1随机事件及其运算 概率论与数理统计研究的对象是随机现象. 概率论是研究随机现象的模型(即概率分布),数理统计是研究随机现象的数据收集与处理. 随机现象: 在一定的条件下,并不总是出现相同结果的现象称为随机现象 样本空间:随机现象的一切可能基本结果组成的集合称为样本空间

【总目录】——概率论与数理统计及Python实现

注:这是一个横跨数年的任务,标题也可以叫做“从To Do List上划掉学习统计学”.在几年前为p值而苦恼的时候,还不知道Python是什么:后来接触过Python,就喜欢上了这门语言.统计作为数据科学的基础,想要从事这方面的工作,这始终是一个绕不过去的槛. 其实从中学就开始学习统计学了,最早的写"正"字唱票(相当于寻找众数),就是一种统计分析的过程.还有画直方图,求平均值,找中位数等.自己在学校里并没有完整系统的学习过概率论和数理统计,直到在工作中用到,才从最初的印象中,逐渐把这门学

【概率论与数理统计】小结9 - 参数估计概述

注:在统计学的应用中,参数估计和假设检验是最重要的两个方面.参数估计是利用样本的信息,对总体的未知参数做估计.是典型的“以偏概全”. 0. 参数及参数的估计 参数是总体分布中的参数,反映的是总体某方面特征的量.例如:合格率,均值,方差,中位数等.参数估计问题是利用从总体抽样得到的信息来估计总体的某些参数或者参数的某些函数. 问题的一般提法 设有一个统计总体,总体的分布函数为$F(x, \theta)$,其中$\theta$为未知参数.现从该总体取样本$X_1, X_2, ..., X_n$,要依

MATLAB中的概率论与数理统计

概率论与数理统计 产生随机数 binornd poissrnd exprnd unidrnd normrnd 概率密度函数(pdf) binopdf poisspdf geopdf unidpdf normpdf exppdf chi2pdf: 卡方分布 tpdf fpdf 数学期望与方差 mean nanmean geomean: 几何平均数 harmmean: 调和平均数 median: 中位数 nammedian sort(x, 1, 'ascend') range: 求最大值与最小值的差

概率论与数理统计 第四版 课后习题答案 习题解析

<概率论与数理统计第四版>是普通高等教育“十一五”国家级规划教材,在2001年出版的概率论与数理统计(第三版)的基础上增订而成. 本次修订新增的内容有:在数理统计中应用Excel,bootstrap方法,P值检验法,箱线图等:同时吸收了国内外优秀教材的优点对习题的类型和数量进行了渊整和充实. 获取方式见文末 概率论与数理统计(第四版) 课后习题解析 第1章 概率论的基本概念课后习题答案 第2章 随机变量及其分布课后习题 第3章 多维随机变量及其分布课后习题 第4章 随机变量的数字特征课后习题

【概率论与数理统计】小结2 - 随机变量概述

注:对随机变量及其取值规律的研究是概率论的核心内容.在上一个小结中,总结了随机变量的概念以及随机变量与事件的联系.这个小结会更加深入的讨论随机变量. 随机变量与事件 随机变量的本质是一种函数(映射关系),在古典概率模型中,“事件和事件的概率”是核心概念:但是在现代概率论中,“随机变量及其取值规律”是核心概念. 随机变量与事件的联系与区别 小结1中对这两个概念的联系进行了非常详细的描述.随机变量实际上只是事件的另一种表达方式,这种表达方式更加形式化和符号化,也更加便于理解以及进行逻辑运算.不同的事

【概率论与数理统计】小结3 - 一维离散型随机变量及其Python实现

注:上一小节对随机变量做了一个概述,这一节主要记录一维离散型随机变量以及关于它们的一些性质.对于概率论与数理统计方面的计算及可视化,主要的Python包有scipy, numpy和matplotlib等. 以下所有Python代码示例,均默认已经导入上面的这几个包,导入代码如下: import numpy as np from scipy import stats import matplotlib.pyplot as plt 0.  Python中调用一个分布函数的步骤 scipy是Pytho