算法--字符串:最长递增子序列LIS

转自:labuladong公众号

很多读者反应,就算看了前文 动态规划详解,了解了动态规划的套路,也不会写状态转移方程,没有思路,怎么办?本文就借助「最长递增子序列」来讲一种设计动态规划的通用技巧:数学归纳思想。

 最长递增子序列(Longest Increasing Subsequence,简写 LIS)是比较经典的一个问题,比较容易想到的是动态规划解法,时间复杂度 O(N^2),我们借这个问题来由浅入深讲解如何写动态规划。

比较难想到的是利用二分查找,时间复杂度是 O(NlogN),我们通过一种简单的纸牌游戏来辅助理解这种巧妙的解法。

先看一下题目,很容易理解:

注意「子序列」和「子串」这两个名词的区别,子串一定是连续的,而子序列不一定是连续的。下面先来一步一步设计动态规划算法解决这个问题。

一、动态规划解法

动态规划的核心设计思想是数学归纳法。

相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在 k<n 时成立,然后想办法证明 k=n 的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于 k 等于任何数都成立。

类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设 dp[0...i−1] 都已经被算出来了,然后问自己:怎么通过这些结果算出dp[i] ?

直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即 dp[i] 的值到底代表着什么?

我们的定义是这样的:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度。

举个例子:

算法演进的过程是这样的:

根据这个定义,我们的最终结果(子序列的最大长度)应该是 dp 数组中的最大值。

int res = 0;for (int i = 0; i < dp.length; i++) {    res = Math.max(res, dp[i]);}return res;

读者也许会问,刚才这个过程中每个 dp[i] 的结果是我们肉眼看出来的,我们应该怎么设计算法逻辑来正确计算每个 dp[i] 呢?

这就是动态规划的重头戏了,要思考如何进行状态转移,这里就可以使用数学归纳的思想:

我们已经知道了 dp[0...4] 的所有结果,我们如何通过这些已知结果推出 dp[5] 呢?

根据刚才我们对 dp 数组的定义,现在想求 dp[5] 的值,也就是想求以 nums[5] 为结尾的最长递增子序列。

nums[5] = 3,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到最后,就可以形成一个新的递增子序列,而且这个新的子序列长度加一。

当然,可能形成很多种新的子序列,但是我们只要最长的,把最长子序列的长度作为 dp[5] 的值即可。

这段代码的逻辑就可以算出 dp[5]。到这里,这道算法题我们就基本做完了。读者也许会问,我们刚才只是算了 dp[5] 呀,dp[4], dp[3] 这些怎么算呢?

类似数学归纳法,你已经可以通过 dp[0...4] 算出 dp[5] 了,那么任意 dp[i] 你肯定都可以算出来:

还有一个细节问题,就是 base case。dp 数组应该全部初始化为 1,因为子序列最少也要包含自己,所以长度最小为 1。下面我们看一下完整代码:

至此,这道题就解决了,时间复杂度 O(N^2)。总结一下动态规划的设计流程:

  首先明确 dp 数组所存数据的含义。这步很重要,如果不得当或者不够清晰,会阻碍之后的步骤。

  然后根据 dp 数组的定义,运用数学归纳法的思想,假设 dp[0...i−1] 都已知,想办法求出 dp[i],一旦这一步完成,整个题目基本就解决了。

但如果无法完成这一步,很可能就是 dp 数组的定义不够恰当,需要重新定义 dp 数组的含义;或者可能是 dp 数组存储的信息还不够,不足以推出下一步的答案,需要把 dp 数组扩大成二维数组甚至三维数组。

二、二分查找解法

这个解法的时间复杂度会将为 O(NlogN),但是说实话,正常人基本想不到这种解法(也许玩过某些纸牌游戏的人可以想出来)。所以如果大家了解一下就好,正常情况下能够给出动态规划解法就已经很不错了。

根据题目的意思,我都很难想象这个问题竟然能和二分查找扯上关系。其实最长递增子序列和一种叫做 patience game 的纸牌游戏有关,甚至有一种排序方法就叫做 patience sorting(耐心排序)。

为了简单起见,后文跳过所有数学证明,通过一个简化的例子来理解一下思路。

首先,给你一排扑克牌,我们像遍历数组那样从左到右一张一张处理这些扑克牌,最终要把这些牌分成若干堆。

处理这些扑克牌要遵循以下规则:

只能把点数小的牌压到点数比它大的牌上。如果当前牌点数较大没有可以放置的堆,则新建一个堆,把这张牌放进去。如果当前牌有多个堆可供选择,则选择最左边的堆放置。

比如说上述的扑克牌最终会被分成这样 5 堆(我们认为 A 的值是最大的,而不是 1

为什么遇到多个可选择堆的时候要放到最左边的堆上呢?因为这样可以保证牌堆顶的牌有序(2, 4, 7, 8, Q),证明略。

按照上述规则执行,可以算出最长递增子序列,牌的堆数就是我们想求的最长递增子序列的长度,证明略。

我们只要把处理扑克牌的过程编程写出来即可。每次处理一张扑克牌不是要找一个合适的牌堆顶来放吗,牌堆顶的牌不是有序吗,这就能用到二分查找了:用二分查找来搜索当前牌应放置的位置。

PS:旧文 二分查找算法详解 详细介绍了二分查找的细节及变体,这里就完美应用上了。如果没读过强烈建议阅读。

找的细节及变体,这里就完美应用上了。

至此,二分查找的解法也讲解完毕。

这个解法确实很难想到。首先涉及数学证明,谁能想到按照这些规则执行,就能得到最长递增子序列呢?其次还有二分查找的运用,要是对二分查找的细节不清楚,给了思路也很难写对。

所以,这个方法作为思维拓展好了。但动态规划的设计方法应该完全理解:假设之前的答案已知,利用数学归纳的思想正确进行状态的推演转移,最终得到答案。

原文地址:https://www.cnblogs.com/clarino/p/12416969.html

时间: 2024-10-14 06:25:35

算法--字符串:最长递增子序列LIS的相关文章

动态规划(DP),最长递增子序列(LIS)

题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(dp[k])+1,(k<i),(a[k]<a[i]) #include <stdio.h> #define MAX 1005 int a[MAX];///存数据 int dp[MAX];///dp[i]表示以a[i]为结尾的最长递增子序列(LIS)的长度 int main() { int

最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现

关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已经做了实现,但是这种方法时间复杂度太高,查阅相关资料后我发现有人提出的算法可以将时间复杂度降低为O(nlogn),这种算法的核心思想就是替换(二分法替换),以下为我对这中算法的理解: 假设随机生成的一个具有10个元素的数组arrayIn[1-10]如[2, 3, 3, 4, 7, 3, 1, 6,

算法实践--最长递增子序列(Longest Increasing Subsquence)

什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5}, {1} 其中最长的递增子序列是{2, 4, 5} 问题:对于长度为N的矢量D,如何找到它的最长递增子序列 一个简单的算法 for (i=N; i>0; --i) {1. 找到所有长度为i的子序列; //复杂度为(N!)/(i!)(N-i)! O(exp(N)) 2. 判断是否其中有一个为递增子

算法面试题 之 最长递增子序列 LIS

找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E6%95%B0%E7%BB%84%E9%83%BD%E6%B2%A1%E7%BB%99%E5%87%BA%E6%9D%A5 我就是理解了一下他的分析 用更通俗易懂的话来说说题目是这样 d[1..9] = 2 1 5 3 6 4 8 9 7 要求找到最长的递增子序列首先用一个数组b[] 依次的将d里面

(算法)最长递增子序列

问题: Given an array of N integer, find the length of the longest increasing subsequence. For example, given [1,-5,4,5,10,-1,-5,7], the longest increasing subsequence is length 4.(1,4,510) 思路: 1.枚举 枚举数组所有的子序列,然后判断它们是否为递增子序列(回溯法). 2.转化 将数组排序,然后找出新数组和旧数组

POJ 1836 Alignment 最长递增子序列(LIS)的变形

大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 5 4 3 2 1 这个序列从左至右看前半部分是递增,从右至左看前半部分也是递增.所以我们先把从左只右和从右至左的LIS分别求出来. 如果结果是这样的: A[i]={1.86 1.86 1.30621 2 1.4 1 1.97 2.2} //原队列 a[i]={1 1 1 2 2 1 3 4} b[

poj 2533 Longest Ordered Subsequence 最长递增子序列(LIS)

两种算法 1.  O(n^2) 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 6 int a[1005]; 7 int dp[1005]; 8 int main() 9 { 10 int n, maxn; 11 while(scanf("%d", &n) != EOF) 12 { 13 maxn = 0; 14 for(

最长递增子序列 (LIS) Longest Increasing Subsequence

问题描述: 有一个长为n的数列a0, a1,..., an-1.请求出这个序列中最长的上升子序列.请求出这个序列中最长的上升子序列. 上升子序列:对于任意i<j都满足ai<aj的子序列. 限制条件 i <= n <= 1000 0 <= ai <= 1000000 两种定义方式 具体看程序注释 1 #include <iostream> 2 #include <stdio.h> 3 #include <string.h> 4 #inc

动态规划 - 最长递增子序列LIS

问题:一个序列有N个数:A[1],A[2],-,A[N],求出最长非降子序列的长度 样例输入:3 1 2 6 5 4 思路: 首先把问题简单化.可以先求A[1],...A[i]的最长非降子序列,令dp[i]为以A[i]结尾的最长非降子序列.当i = 1 时, 明显是长度dp[1] = 1 : i = 2 时,前面没有比1小的数字,故dp[2]=1 , 此时的最长非降子序列为1 ; i = 3 时,比数字2小的数是1 ,并且只有1 , 分析可知 dp[3] = dp[2]+1:当i = 4 时,找