Java编程的逻辑 (17) - 继承实现的基本原理

第15节我们介绍了继承和多态的基本概念,而上节我们进一步介绍了继承的一些细节,本节我们通过一个例子,来介绍继承实现的基本原理。需要说明的是,本节主要从概念上来介绍原理,实际实现细节可能与此不同。

例子

这是基类代码:

public class Base {
    public static int s;
    private int a;

    static {
        System.out.println("基类静态代码块, s: "+s);
        s = 1;
    }

    {
        System.out.println("基类实例代码块, a: "+a);
        a = 1;
    }

    public Base(){
        System.out.println("基类构造方法, a: "+a);
        a = 2;
    }

    protected void step(){
        System.out.println("base s: " + s +", a: "+a);
    }

    public void action(){
        System.out.println("start");
        step();
        System.out.println("end");
    }
}

Base包括一个静态变量s,一个实例变量a,一段静态初始化代码块,一段实例初始化代码块,一个构造方法,两个方法step和action。

这是子类代码:

public class Child extends Base {
    public static int s;
    private int a;

    static {
        System.out.println("子类静态代码块, s: "+s);
        s = 10;
    }

    {
        System.out.println("子类实例代码块, a: "+a);
        a = 10;
    }

    public Child(){
        System.out.println("子类构造方法, a: "+a);
        a = 20;
    }

    protected void step(){
        System.out.println("child s: " + s +", a: "+a);
    }
}

Child继承了Base,也定义了和基类同名的静态变量s和实例变量a,静态初始化代码块,实例初始化代码块,构造方法,重写了方法step。

这是使用的代码:

public static void main(String[] args) {
    System.out.println("---- new Child()");
    Child c = new Child();

    System.out.println("\n---- c.action()");
    c.action();

    Base b = c;
    System.out.println("\n---- b.action()");
    b.action();

    System.out.println("\n---- b.s: " + b.s);
    System.out.println("\n---- c.s: " + c.s);
}

创建了Child类型的对象,赋值给了Child类型的引用变量c,通过c调用action方法,又赋值给了Base类型的引用变量b,通过b也调用了action,最后通过b和c访问静态变量s并输出。这是屏幕的输出结果:

---- new Child()
基类静态代码块, s: 0
子类静态代码块, s: 0
基类实例代码块, a: 0
基类构造方法, a: 1
子类实例代码块, a: 0
子类构造方法, a: 10

---- c.action()
start
child s: 10, a: 20
end

---- b.action()
start
child s: 10, a: 20
end

---- b.s: 1

---- c.s: 10

下面我们来解释一下背后都发生了一些什么事情,从类的加载开始。

类的加载

在Java中,所谓类的加载是指将类的相关信息加载到内存。在Java中,类是动态加载的,当第一次使用这个类的时候才会加载,加载一个类时,会查看其父类是否已加载,如果没有,则会加载其父类。

一个类的信息主要包括以下部分:

  • 类变量(静态变量)
  • 类初始化代码
  • 类方法(静态方法)
  • 实例变量
  • 实例初始化代码
  • 实例方法
  • 父类信息引用

类初始化代码包括:

  1. 定义静态变量时的赋值语句
  2. 静态初始化代码块

实例初始化代码包括:

  1. 定义实例变量时的赋值语句
  2. 实例初始化代码块
  3. 构造方法

类加载过程包括:

  1. 分配内存保存类的信息
  2. 给类变量赋默认值
  3. 加载父类
  4. 设置父子关系
  5. 执行类初始化代码

需要说明的是,关于类初始化代码,是先执行父类的,再执行子类的,不过,父类执行时,子类静态变量的值也是有的,是默认值。对于默认值,我们之前说过,数字型变量都是0,boolean是false,char是‘\u0000‘,引用型变量是null。

之前我们说过,内存分为栈和堆,栈存放函数的局部变量,而堆存放动态分配的对象,还有一个内存区,存放类的信息,这个区在Java中称之为方法区。

加载后,对于每一个类,在Java方法区就有了一份这个类的信息,以我们的例子来说,有三份类信息,分别是Child,Base,Object,内存示意图如下:

我们用class_init()来表示类初始化代码,用instance_init()表示实例初始化代码,实例初始化代码包括了实例初始化代码块和构造方法。例子中只有一个构造方法,实际中可能有多个实例初始化方法。

本例中,类的加载大概就是在内存中形成了类似上面的布局,然后分别执行了Base和Child的类初始化代码。接下来,我们看对象创建的过程。

创建对象

在类加载之后,new Child()就是创建Child对象,创建对象过程包括:

  1. 分配内存
  2. 对所有实例变量赋默认值
  3. 执行实例初始化代码

分配的内存包括本类和所有父类的实例变量,但不包括任何静态变量。实例初始化代码的执行从父类开始,先执行父类的,再执行子类的。但在任何类执行初始化代码之前,所有实例变量都已设置完默认值。

每个对象除了保存类的实例变量之外,还保存着实际类信息的引用。

Child c = new Child();会将新创建的Child对象引用赋给变量c,而Base b = c;会让b也引用这个Child对象。创建和赋值后,内存布局大概如下图所示:


引用型变量c和b分配在栈中,它们指向相同的堆中的Child对象,Child对象存储着方法区中Child类型的地址,还有Base中的实例变量a和Child中的实例变量a。创建了对象,接下来,来看方法调用的过程。

方法调用

我们先来看c.action();这句代码的执行过程是:

  1. 查看c的对象类型,找到Child类型,在Child类型中找action方法,发现没有,到父类中寻找
  2. 在父类Base中找到了方法action,开始执行action方法
  3. action先输出了start,然后发现需要调用step()方法,就从Child类型开始寻找step方法
  4. 在Child类型中找到了step()方法,执行Child中的step()方法,执行完后返回action方法
  5. 继续执行action方法,输出end

寻找要执行的实例方法的时候,是从对象的实际类型信息开始查找的,找不到的时候,再查找父类类型信息。

我们来看b.action();,这句代码的输出和c.action是一样的,这称之为动态绑定,而动态绑定实现的机制,就是根据对象的实际类型查找要执行的方法,子类型中找不到的时候再查找父类。这里,因为b和c指向相同的对象,所以执行结果是一样的。

如果继承的层次比较深,要调用的方法位于比较上层的父类,则调用的效率是比较低的,因为每次调用都要进行很多次查找。大多数系统使用一种称为虚方法表的方法来优化调用的效率。

虚方法表

所谓虚方法表,就是在类加载的时候,为每个类创建一个表,这个表包括该类的对象所有动态绑定的方法及其地址,包括父类的方法,但一个方法只有一条记录,子类重写了父类方法后只会保留子类的。

对于本例来说,Child和Base的虚方法表如下所示:


对Child类型来说,action方法指向Base中的代码,toString方法指向Object中的代码,而step()指向本类中的代码。

这个表在类加载的时候生成,当通过对象动态绑定方法的时候,只需要查找这个表就可以了,而不需要挨个查找每个父类。

接下来,我们看对变量的访问。

变量访问

对变量的访问是静态绑定的,无论是类变量还是实例变量。代码中演示的是类变量:b.s和c.s,通过对象访问类变量,系统会转换为直接访问类变量Base.s和Child.s。

例子中的实例变量都是private的,不能直接访问,如果是public的,则b.a访问的是对象中Base类定义的实例变量a,而c.a访问的是对象中Child类定义的实例变量a。

小结

本节,我们通过一个例子,介绍了类的加载、对象创建、方法调用以及变量访问的内部过程。现在,我们应该对继承的实现有了一个比较清楚的理解。

之前我们提到过,继承其实是把双刃剑,为什么这么说呢?让我们下节来探讨。

原文地址:https://www.cnblogs.com/ivy-xu/p/12387264.html

时间: 2024-10-08 11:26:38

Java编程的逻辑 (17) - 继承实现的基本原理的相关文章

计算机程序的思维逻辑 (17) - 继承实现的基本原理

第15节我们介绍了继承和多态的基本概念,而上节我们进一步介绍了继承的一些细节,本节我们通过一个例子,来介绍继承实现的基本原理.需要说明的是,本节主要从概念上来介绍原理,实际实现细节可能与此不同. 例子 这是基类代码: public class Base { public static int s; private int a; static { System.out.println("基类静态代码块, s: "+s); s = 1; } { System.out.println(&qu

Java编程的逻辑 (18) - 为什么说继承是把双刃剑

继承是把双刃剑 通过前面几节,我们应该对继承有了一个比较好的理解,但之前我们说继承其实是把双刃剑,为什么这么说呢?一方面是因为继承是非常强大的,另一方面是因为继承的破坏力也是很强的. 继承的强大是比较容易理解的,具体体现在: 子类可以复用父类代码,不写任何代码即可具备父类的属性和功能,而只需要增加特有的属性和行为. 子类可以重写父类行为,还可以通过多态实现统一处理. 给父类增加属性和行为,就可以自动给所有子类增加属性和行为. 继承被广泛应用于各种Java API.框架和类库之中,一方面它们内部大

Java编程思想——第17章 容器深入研究(two)

六.队列 排队,先进先出.除并发应用外Queue只有两个实现:LinkedList,PriorityQueue.他们的差异在于排序而非性能. 一些常用方法: 继承自Collection的方法: add 在尾部增加一个元索 如果队列已满,则抛出一个IIIegaISlabEepeplian异常 remove 移除并返回队列头部的元素 如果队列为空,则抛出一个NoSuchElementException异常 element 返回队列头部的元素 如果队列为空,则抛出一个NoSuchElementExce

Java编程的逻辑 (87) - 类加载机制

上节,我们探讨了动态代理,在前几节中,我们多次提到了类加载器ClassLoader,本节就来详细讨论Java中的类加载机制与ClassLoader. 类加载器ClassLoader就是加载其他类的类,它负责将字节码文件加载到内存,创建Class对象.与之前介绍的反射.注解.和动态代理一样,在大部分的应用编程中,我们不太需要自己实现ClassLoader. 不过,理解类加载的机制和过程,有助于我们更好的理解之前介绍的内容,更好的理解Java.在反射一节,我们介绍过Class的静态方法Class.f

Java编程的逻辑 (19) - 接口的本质

数据类型的局限 之前我们一直在说,程序主要就是数据以及对数据的操作,而为了方便操作数据,高级语言引入了数据类型的概念,Java定义了八种基本数据类型,而类相当于是自定义数据类型,通过类的组合和继承可以表示和操作各种事物或者说对象. 但,这种只是将对象看做属于某种数据类型,并按该类型进行操作,在一些情况下,并不能反映对象以及对对象操作的本质. 为什么这么说呢?很多时候,我们实际上关心的,并不是对象的类型,而是对象的能力,只要能提供这个能力,类型并不重要.我们来看一些生活中的例子. 要拍个照片,很多

Java编程的逻辑 (24) - 异常 (上)

之前我们介绍的基本类型.类.接口.枚举都是在表示和操作数据,操作的过程中可能有很多出错的情况,出错的原因可能是多方面的,有的是不可控的内部原因,比如内存不够了.磁盘满了,有的是不可控的外部原因,比如网络连接有问题,更多的可能是程序的编程错误,比如引用变量未初始化就直接调用实例方法. 这些非正常情况在Java中统一被认为是异常,Java使用异常机制来统一处理,由于内容较多,我们分为两节来介绍,本节介绍异常的初步概念,以及异常类本身,下节主要介绍异常的处理. 我们先来通过一些例子认识一下异常. 初始

Java编程的逻辑 (35) - 泛型 (上) - 基本概念和原理

之前章节中我们多次提到过泛型这个概念,从本节开始,我们就来详细讨论Java中的泛型,虽然泛型的基本思维和概念是比较简单的,但它有一些非常令人费解的语法.细节.以及局限性,内容比较多. 所以我们分为三节,逐步来讨论,本节我们主要来介绍泛型的基本概念和原理,下节我们重点讨论令人费解的通配符,最后一节,我们讨论一些细节和泛型的局限性. 后续章节我们会介绍各种容器类,容器类可以说是日常程序开发中天天用到的,没有容器类,难以想象能开发什么真正有用的程序.而容器类是基于泛型的,不理解泛型,我们就难以深刻理解

Java编程的逻辑 (38) - 剖析ArrayList

从本节开始,我们探讨Java中的容器类,所谓容器,顾名思义就是容纳其他数据的,计算机课程中有一门课叫数据结构,可以粗略对应于Java中的容器类,我们不会介绍所有数据结构的内容,但会介绍Java中的主要实现,并分析其基本原理和主要实现代码. 前几节在介绍泛型的时候,我们自己实现了一个简单的动态数组容器类DynaArray,本节,我们介绍Java中真正的动态数组容器类ArrayList. 我们先来看它的基本用法. 基本用法 新建ArrayList ArrayList是一个泛型容器,新建ArrayLi

Java编程的逻辑 (91) - Lambda表达式

在之前的章节中,我们的讨论基本都是基于Java 7的,从本节开始,我们探讨Java 8的一些特性,主要内容包括: 传递行为代码 - Lambda表达式 函数式数据处理 - 流 组合式异步编程 - CompletableFuture 新的日期和时间API 本节,我们先讨论Lambda表达式,它是什么?有什么用呢? Lambda表达式是Java 8新引入的一种语法,是一种紧凑的传递代码的方式,它的名字来源于学术界的λ演算,具体我们就不探讨了. 理解Lambda表达式,我们先回顾一下接口.匿名内部类和