环境配置 python 3.6+Anaconda+cuda9.0+cudNN7.1+Tensorflow

最近在摸deepface代码,一堆环境要配置,过程记录一下吧。

安装顺序:Python-> Tensorflow -> Nvidia GPU Driver -> CUDA -> CUDNN

一、安装Python3.6

Ubuntu16.04系统下默认是python2.7.网上说一般不建议卸载系统自带的python,所以保留。

1.  配置软件仓库

sudo add-apt-repository ppa:jonathonf/python-3.6

2.  检查系统软件包,安装Python3.6

sudo apt-get update

sudo apt-get update

sudo apt-get install python3.6

3. 修改python3的默认版本

因为现在python3有3.5和3.6两个版本,我们想要优先使用3.6,执行以下命令:

sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.5 1

sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 2

sudo update-alternatives --config python3

4.最后一条,前面有*号的就是python3的默认版本。之后如果想修改也可以通过这个方法进行修改,只需要输入你想要的版本的序号就可以了。但是现在输入python命令默认的还是python2,可以通过下面两条命令修改优先级

sudo update-alternatives--install /usr/bin/python python /usr/bin/python2 100

sudo update-alternatives--install /usr/bin/python python /usr/bin/python3 150

二、安装Anaconda

1.到https://www.anaconda.com/download/下载对应版本的anaconda,下文都是基于python3.6进行的

2. 下载完成后,安装 Python3.6对应的Anaconda

bash ~/Downloads/Anaconda3-5.0.1-Linux-x86_64.sh

后面的文件名对应你下载的文件,路径对应你下载文件的路径
3. 出现more就一直按回车看证书信息,问是否接受license,输入yes

默认的路径为/home/username/anaconda3,不改变的话就直接按ENTER就好了,下面就是等待安装过程:

4.到这里注意,询问是否将Anaconda3加入到环境变量中,选yes。因为默认是no,之后要用的话还要自己在环境变量中加一次:

关闭当前终端,并重新开一个,或者执行命令source ~/.bashrc使得上面更新的环境变量生效。

5. 通过打开一个Anaconda Navigator(一个包含Anaconda的程序)来验证安装是否成功。

anaconda-navigator

打开时间会稍稍有一点长,成功的话会见到Anaconda Navigator的界面。

//这里补充一下,由于anaconda 和 usr/local下都有python,非常容易搞混淆。在sudo也就是管理员的权限下,使用的是usr/local的python,

对应的pip也是安装在其下的site-packages文件夹中,我第一次安装tf的时候并没有留意使用的是哪个路劲下的python,导致无法使用tf。

修改pip,python路劲参考:https://blog.csdn.net/C_chuxin/article/details/82962797。可以使用pip show pip参看当前使用pip路径,python -m site可以

参看当前使用python的路劲。

三、安装TensorFlow

1. CUDA 9.0

为避免和新的CUDA 版本产生冲突,如果存在之前的的旧版本,可以选择先卸载,在/usr/local/cuda/bin目录下有一个uninstallcuda*.pl 文件,可以直接运行卸载,命令如下:

sudo ./uninstall_cuda_*.pl

这样即可将 CUDA 全部卸载。

接下来我们再下载 CUDA 9.0,注意 TensorFlow 1.5 和 1.6 版本依然只是兼容 CUDA 9.0,没有兼容CUDA 9.1,所以不要下载 9.1,CUDA9.0 的下载地址是:https://developer.nvidia.com/cuda-90-download-archive,然后依次勾选好系统的版本,这里我们选择 Linux-x86_64-Ubuntu-16.04-runfile 的配置,然后点击 Base Installer 部分的 Download 按钮,下载 CUDA 9.0 安装包。

对应的下载命令是:

wgethttps://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/cuda_9.0.176_384.81_linux-run

执行此命令,等待下载完成即可。
sudo bash cuda_9.0.176_384.81_linux-run

安装过程需要输入一些确认选项,过程如下:

Description

The NVIDIA CUDA Toolkit provides command-line and graphical

tools for building, debugging and optimizing the performance

Do you accept the previously read EULA?

accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?

(y)es/(n)o/(q)uit: n

Install the CUDA 9.0 Toolkit?

(y)es/(n)o/(q)uit: y

Enter Toolkit Location

[ default is /usr/local/cuda-9.0 ]:

Do you want to install a symbolic link at /usr/local/cuda?

(y)es/(n)o/(q)uit: y

Install the CUDA 9.0 Samples?

(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location

[ default is /home/cqc ]:

Installing the CUDA Toolkit in /usr/local/cuda-9.0 ...

最后如果出现这样的提示,就证明CUDA 安装好了:

Driver:   Not Selected

Toolkit:  Installed in /usr/local/cuda-9.0

Samples:  Installed in /home/cqc, but missing recommendedlibraries

Please make sure that

-   PATH includes /usr/local/cuda-9.0/bin

-   LD_LIBRARY_PATH includes /usr/local/cuda-9.0/lib64, or, add/usr/local/cuda-9.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in/usr/local/cuda-9.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in/usr/local/cuda-9.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install theCUDA Driver. A driver of version at least 384.00 is required for CUDA 9.0functionality to work.

To install the driver using this installer, run the following command,replacing <CudaInstaller> with the name of this run file:

sudo <CudaInstaller>.run -silent -driver

然后我们需要配置一下环境变量,更改~/.bashrc 文件,添加如下几行:

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}

exportLD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

export CUDA_HOME=/usr/local/cuda

修改完毕之后执行一下使其生效:

source ~/.bashrc

这时我们输出 CUDA_HOME、LD_LIBRARY_PATH 就可以看到对应的输出了:

echo $CUDA_HOME

/usr/local/cuda

echo $LD_LIBRARY_PATH

/usr/local/cuda/lib64

这样就代表环境变量生效了,CUDA 安装完成。

2. cuDNN 7.1

cuDNN 的全称是 The NVIDIA CUDA? Deep Neural Network library,是专门用来对深度学习加速的库,它支持 Caffe2, MATLAB, Microsoft Cognitive Toolkit, TensorFlow, Theano 及 PyTorch 等深度学习的加速优化,目前最新版本是 cuDNN 7.1,接下来我们来看下它的安装方式。

下载链接:https://developer.nvidia.com/rdp/cudnn-download,需要注册之后才能打开,这里我们选择cuDNN v7.1.1 (Feb 28, 2018), for CUDA 9.0,然后选择 cuDNNv7.1.1 Library for Linux,如图所示:

下载下来之后解压安装即可:

tar -zxvf cudnn-9.0-linux-x64-v7.1.tgz

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/

sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d

sudo chmod a+r /usr/local/cuda/include/cudnn.h

sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

执行完如上命令之后,cuDNN 就安装好了,这时我们可以发现在/usr/local/cuda/include 目录下就多了 cudnn.h 头文件。

3.TensorFlow 1.6

到现在为止 Python 3.6、CUDA 9.0 和 cuDNN 7.1 就已经安装好了,而且环境变量也配置好了,接下来我们直接安装TensorFlow 1.6 即可,TensorFlow 1.6 版本针对 CUDA 9 和 cuDNN 7 做了优化,可以预构建二进制文件。

这里需要安装的是 TensorFlow 的 GPU 版本,命令如下:
pip3 install tensorflow-gpu==1.6.0

安装完成之后验证一下:

import tensorflow

如果没有报错,那就证明全部环境配置都成功了。
---------------------
作者:xyu66
来源:CSDN
原文:https://blog.csdn.net/xyu66/article/details/80022282
版权声明:本文为博主原创文章,转载请附上博文链接!

原文地址:https://www.cnblogs.com/z1141000271/p/10289124.html

时间: 2024-11-05 14:51:56

环境配置 python 3.6+Anaconda+cuda9.0+cudNN7.1+Tensorflow的相关文章

SUBLIME TEXT2 基础环境配置+python

SUBLIME TEXT2 windows基础环境配置+python 软件版本sublime text 2, PC环境:windows 7, 32 bit 配置时间:2014年11月19日 1.默认安装位置修改为: C:\Program Files\SublimeText (安装位置默认为C:\Program Files\Sublime Text 2,但安装后会出现error trying to parse settings:……的错误,目前不知道原因.) 2.安装package control

Ubuntu18.04 + CUDA9.0 + cuDNN7.3 + Tensorflow-gpu-1.12 + Jupyter Notebook深度学习环境配置

目录 一.Ubuntu18.04 LTS系统的安装 1. 安装文件下载 2. 制作U盘安装镜像文件 3. 开始安装 二.设置软件源的国内镜像 1. 设置方法 2.关于ubuntu镜像的小知识 三.Nvidia显卡驱动的安装 1. 首先查看显卡型号和推荐的显卡驱动 2. 安装nvidia-390版本驱动 3. 重启系统,可以查看安装是否成功 四.CUDA9.0的安装 1. CUDA版本选择 2. 安装CUDA9.0 3. 设置环境变量 五.cuDNN7.3的安装 六.Tensorflow-1.12

ubuntu16.04服务器上无root权限,配置个人tensorflow环境--cuda9.0+cuDNN7+tensorflow-gpu-1.18

本人在服务器上已经用Anconda创建好python3.5的环境,这个网上有一大堆教程.接下来是重点. 1. cuda的安装 https://developer.nvidia.com/cuda-downloads,选runfile(local)这个文件下载然后执行如下代码 sh cuda_9.0.176_384.81_linux-run chmod +x filename.run #如果不能直接运行,执行这个命令 在协议中选择同意EULA(accept),不安装driver installati

1.python环境配置 - python基础入门

工欲善其事必先利其器,python学习首先要做得就是配置python环境.配置环境只需要下载Pycharm 和 Anaconda两个安装包即可,请跟上我得步伐,一步一步操作. 重要的事情说三遍: 先安装anaconda再安装pycharm 先安装anaconda再安装pycharm 先安装anaconda再安装pycharm 一.下载/安装Anaconda(同时支持 Linux,Mac,Windows三大平台,以windows为例)         1.下载地址:https://www.anac

Win10+CUDA9.0+cuDNN7.2 下载 安装 配置

安装CUDA前须安装VS2015 参考: https://blog.csdn.net/yuyushikuan/article/details/79067484 https://blog.csdn.net/fengbingchun/article/details/53892997 1.下载: CUDA9.0下载链接(1.33GB):https://developer.nvidia.com/cuda-90-download-archive?target_os=Windows&target_arch=

ubuntu18.04+CUDA9.0+cuDNN7.1.4+tensorflow1.9 环境搭建

1. 主机配置说明 在前几天,得知公司新采购了几台主机,所以我们组领导就向公司申请了一台回来,做数据分析. 服务器买的是惠普的主机,型号是:HP EliteDesk 800 G3.不算强劲,但用来做GPU的数据分析测试,也可以了.具体参数:CPU:i7-7700内存: 32G显卡: GTX 1070硬盘: 256 ssd + 1T自带 windows 10 64位 专业版系统 2. 更换系统 由于主机自带的是windows系统,但是我们想用 ubuntu 的系统,因此,只能先重装一下系统了.具体

YOLO 训练环境搭建(Ubuntu18.04+Cuda9.0+Cudnn7.1)

1.先查看是否安装有以下组件,若有先考虑彻底删除再安装(安装严格按照下面顺序进行) 查看nvidia 版本 nvidia-smi 查看cuda 版本 cat /usr/local/cuda/version.txt 查看cudnn 版本 cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 2.nvidia 驱动,cuda,cudnn对应关系  nvidia与cuda要求的版本对应关系: https://docs.nvidia.co

Visual Stadio 与NX二次开发的环境配置(以VS2010、NX10.0为例)

问题描述: 许多博文发布了关于Visual Stadio 与NX二次开发的环境配置,这些博文的提示事修改了文件NX10_Open.vsz中的引擎为10.0,但实际结果是创建C++引导失败. 问题解决概述: 创建正确引导应该同时修改NX10_Open.vsz与NX10_NXOpenCPP.vsz两个文件的引擎版本号. 解决步骤: 将NX10.0 UGOPEN目录下的所有文件夹(VB.VC.VC#)复制,并粘贴到Visual Stadio 2010安装目录下与对应的文件夹合并即可(覆盖). 例如,将

ubuntu tensorflow install(Ubuntu16.04+CUDA9.0+cuDNN7.5+Python3.6+TensorFlow1.5)

在网上找了很多案例,踩了许多坑,感觉比较全面的是下面介绍的 http://www.cnblogs.com/xuliangxing/p/7575586.html 先说说我的步骤: 首先安装了Anacoda,因为是科学运算环境,所以先安装了最新版,所以对应的Python 3.6 安装显卡驱动:GTX950M 安装了最新的 390驱动,担心不兼容,所以都用最新的 安装cuda,这个坑最后才发现,因为安装最新的9.1版本,最后tensorflow只找9.0的文件.所以,这个地方一定要选其他release