Description
有n 个位置和m 个操作。操作有两种,每次操作如果是1 a b c 的形式,表示往第a 个位置到第b 个位置每个位置加入一个数c。如果操作形如2 a b c 的形式,表示询问从第a 个位置到第b 个位置,第c 大的数是多少。
Input
在输入文件sequence.in 中,第一行两个数n,m。意义如题目描述。
接下来m 行每行形如1 a b c 或者2 a b c 如题目描述。
Output
在输出文件sequence.out 中,对于每个询问回答k 大数是多少。
Sample Input
2 51 1 2 11 1 2 22 1 1 22 1 1 12 1 2 3
Sample Output
121
Data Constraint
30%的数据n=m=1000
100%的数据n,m≤50000,并且后7 个点的数据n,m 的范围从32000 到50000近似成等差数列递增。a≤b≤n,1 操作中|c|≤n,2 操作中|c|≤maxlongint
Hint
第一个操作后位置1 的数只有1,位置2 的数也只有1。第二个操作后位置1的数有1、2,位置2 的数也有1、2。第三次询问位置1 到位置1 第2 大的数是1。第四次询问位置1 到位置1 第1 大的数是2。第五次询问位置1 到位置2 第3大的数是1。
题解
- 题目简洁大方,好评!!!
- 这种题一般都是用树套树来做滴,题目大意:要求支持区间修改,区间查询第K大
- 考虑一下CDQ分治,先二分一个答案
- 我们就对于一下当前这一段的处理序列中,先依次处理,碰到询问就考虑是否可行
- 如果对于一个询问,发现当前的x之下查询的ans大于那个值,说明答案更小,所以要放到左边去递归处理
- 但是同时记得,把询问的值减掉查询出的ans,表示这一段肯定比它大,先减掉
- 至于查询的话,区间修改、区间查询,可以用树状数组就行了
代码
1 #include <cstdio> 2 #include <iostream> 3 #include <cstring> 4 #define ll long long 5 #define N 50010 6 using namespace std; 7 int n,m,ans[N]; 8 ll sz1[N],sz2[N]; 9 bool bz[N]; 10 struct edge{ int d,x,y,c,op; }a[N],P[N],Q[N]; 11 void add(int x,int y) { for (int r=x;x<=n;x+=x&-x) sz1[x]+=y,sz2[x]+=r*y; } 12 ll query(int x) 13 { 14 ll r=0; 15 for (int i=x;i;i-=i&-i) r+=(x+1)*sz1[i]-sz2[i]; 16 return r; 17 } 18 void cdq(int L,int R,int l,int r) 19 { 20 if (L>R||l>r) return; 21 if (l==r) 22 { 23 for (int i=L;i<=R;i++) ans[a[i].d]=l; 24 return; 25 } 26 int mid=l+r+1>>1,num1=0,num2=0;ll x; 27 for (int i=L;i<=R;i++) 28 if (a[i].op==1) 29 { 30 if (a[i].c>=mid) add(a[i].x,1),add(a[i].y+1,-1),P[++num2]=a[i]; else Q[++num1]=a[i]; 31 } 32 else 33 { 34 x=query(a[i].y)-query(a[i].x-1); 35 if (x>=a[i].c) P[++num2]=a[i]; else a[i].c-=x,Q[++num1]=a[i]; 36 } 37 for (int i=L;i<=R;i++) if (a[i].op==1&&a[i].c>=mid) add(a[i].x,-1),add(a[i].y+1,1); 38 for (int i=1;i<=num1;i++) a[L+i-1]=Q[i]; 39 for (int i=1;i<=num2;i++) a[L+num1+i-1]=P[i]; 40 cdq(L,L+num1-1,l,mid-1),cdq(L+num1,R,mid,r); 41 } 42 int main() 43 { 44 scanf("%d%d",&n,&m); 45 for (int i=1;i<=m;i++) 46 { 47 scanf("%d%d%d%d",&a[i].op,&a[i].x,&a[i].y,&a[i].c),a[i].d=i; 48 if (a[i].op==2) bz[i]=1; 49 } 50 cdq(1,m,1,n); 51 for (int i=1;i<=m;i++) if (bz[i]) printf("%d\n",ans[i]); 52 }
原文地址:https://www.cnblogs.com/Comfortable/p/10335863.html
时间: 2025-01-01 22:06:37