08.青蛙跳台阶 Java

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

思路

暴力枚举(自顶向下递归):
	若台阶数小于等于0,返回0;
	若台阶数为1,返回1;(1)
	若台阶数为2,返回2;(1,1),(2)
	否则,返回F(n-1)+F(n-2);(因为下一步只能是跳1级或者跳2级)
备忘录算法(自顶向下递归):
	上面的方法包含大量重复计算,这里利用Map来记录计算过的结果,以减少计算次数。
迭代法(自底向上迭代,也许也算动态规划吧):
	拿两个变量记录前两个结果和一个临时变量保存当前计算结果(也可不用改临时变量)

代码

public class Solution {
    public int JumpFloor(int target) {
        if(target <= 0 ){
            return 0;
        }else if(target == 1 || target ==2){
            return target;
        }else{
            return JumpFloor(target-1)+JumpFloor(target-2);
        }
    }
}
import java.util.Map;
import java.util.HashMap;
public class Solution {
    public int JumpFloor(int target) {
        Map<Integer, Integer> map = new HashMap<Integer, Integer>();
        return JumpFloor(target,map);
    }

    public int JumpFloor(int n,Map<Integer, Integer> map){
        if(n <= 0){
            return 0;
        }else if(n <=2){
            return n;
        }
        if(map.containsKey(n)){
            return map.get(n);
        }else{
            int value = JumpFloor(n-1,map) + JumpFloor(n-2,map);
            map.put(n,value);
            return value;
        }
    }
}
public class Solution {
    public int JumpFloor(int target) {
        if(target <= 0){
            return 0;
        }else if(target == 1 || target == 2){
            return target;
        }
        int temp=0,pre=1,last=2;
        for(int i = 3;i <= target;i++){
            temp = pre + last;
            pre = last;
            last = temp;
        }
        return last;
    }
}

原文地址:https://www.cnblogs.com/feicheninfo/p/10522548.html

时间: 2025-01-12 05:15:41

08.青蛙跳台阶 Java的相关文章

青蛙跳台阶(Fibonacci数列)

问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n=3时,可以从n=1直接跳到n=3,也可以从n=2直接跳到n=3,及f(3)=f(1)+f(2)=3...,所以可以使用递归,自顶向下,一步一步求解,但是仔细分析一下,如果n=10,需要求得f(9)和f(8),而f(9)=f(8)+f(7),f(8)=f(7)+f(6),可以很明显看到,求了重复的f(

斐波那契数列及青蛙跳台阶问题

题目1: 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项. 斐波那契(Fibonacci)数列定义例如以下: f(n)=?????0,1,f(n?1)+f(n?2),n=0n=1n>2 效率非常低的解法: 递归解法(效率非常低) long long Fibonacci_Solution1(unsigned int n) { if(n <= 0) return 0; if(n == 1) return 1; return Fibonacci_Solution1(n - 1) +

累死青蛙系列——青蛙跳台阶问题

(1)斐波那契数列 f(1) = 1 f(2) = 2 f(n) = f(n-1) + f(n-2) function Fibonacci(n) { // write code here var a=[0,1]; if(n>1){ for(var i=2;i<=n;i++){ a[i]=a[i-1]+a[i-2]; } } return a[n]; } (2)青蛙跳台阶 青蛙每次只能跳1个或2个台阶,有n阶台阶,青蛙有多少种跳法? 这要倒过来想,当在第n阶台阶的前一步时,青蛙只有两种选择,1或

Python算法题(一)——青蛙跳台阶

题目一(青蛙跳台阶): 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析: 假设只有一级台阶,则总共只有一种跳法: 假设有两级台阶,则总共有两种跳法: 假设有n级台阶,那么第一步就要分为跳一步和跳两步: 跳一步,那么接下来就是跳n-1: 跳两步,那么接下来就是跳n-2: 所以,总数可以认为是f(n-1)+f(n-2). 主要代码: def frog(num): if num <= 2: return num t1, t2 = 1, 2 for _

青蛙跳台阶算法

一.问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共需要多少种跳法. 思路:首先考虑n等于0.1.2时的特殊情况,f(0) = 0   f(1) = 1  f(2) = 2 其次,当n=3时,青蛙的第一跳有两种情况:跳1级台阶或者跳两级台阶,假如跳一级,那么 剩下的两级台阶就是f(2):假如跳两级,那么剩下的一级台阶就是f(1),因此f(3)=f(2)+f(1)  当n = 4时,f(4) = f(3) +f(2),以此类推...........可以联想到F

青蛙跳台阶问题

题目:一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 我的思路:最开始我的思路是把这个看成是一个数学问题,n=i*1+k*2先把所有可能满足这个公式的i和k求出来.然后在对i和k做排列组合.很明显i的范围应该是0<i<=n,所以我们已i开始迭代.下面贴上代码吧.把注释都写上! public int JumpFloor(int target) { int step = 0; for (int i = 0; i <= target; i++

青蛙跳台阶问题-斐波拉契数列

题目1:一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.求总共有多少种跳法 首先我们考虑最简单的情况,加入只有1级台阶,那显然只有一种跳法,如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级:另外一种就是一次跳2级 现在我们来讨论一般情况.我们把n级台阶时的跳法看成是n的函数,记为f(n).当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1):另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的

剑指offer青蛙跳台阶问题

(1)一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. //递归方式 public static int f(int n) { //参数合法性验证 if (n < 1) { System.out.println("参数必须大于1!"); System.exit(-1); } if (n == 1 || n == 2) return 1; else return f(n - 1) + f(n - 2); } //非递归方式 publ

青蛙跳台阶的问题

#斐波纳契 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. # 假设最后一步到X级台阶,有F(X)种走法, # 这题求的就是F(11) # 因为每步可以迈1或2级台阶. # 所以最后一步到11级台阶, # 而倒数第2步可能是在第10或9级台阶. # 所以到11级台阶的走法,是到第10或9级台阶走法的和. # 同样到9级台阶的走法,是到第7或8级台阶走法的和. # ................... # F(11) # =F(9)+F(10) # =