Codeforces 917B MADMAX (DP+博弈)

<题目链接>

题目大意:
给定一个DAG图,其中图的边权是给定的字符所对应的ascii码,现在A先手,B后手,每次沿DAG图走一步,但是第i次走的边权一定要大于等于第i-1次走的边权(这里是值两个人一起的第$i$次,不是一个人走动的第$i$次),最先无法走动的人输。让你对$A,B$的起始位置邻接矩阵$(i,j)$(代表A从$i$点出发,$B$从$j$点开始出发),对应给出他们的胜负情况,如果A胜,输出A,反之,输出B。

解题分析:

$dp[x][y][k]$表示先手$x$,后手$y$,边权为$k$对应的胜负情况。

对于$x$所有能够直接到达的点$v$,状态转移为$dp[y][v][nowval]$,前一个状态的后手$y$变成了当前的先手状态,$nowval$表示$x->v$的边权。

如果存在至少一个$v$,使得$dp[y][v][nowval]$为必败状态,则上一个状态$dp[x][y][k]$为必胜状态(因为他们都是选择最优的情况走)。

$dp[x][y][k]=0$表示先手必败,反之则必胜。

总时间复杂度为:$O(|sigma|*n*(n+m))$

#include <bits/stdc++.h>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define fi first
#define se second
#define pb push_back
const int N = 110;

int dp[N][N][130];
typedef pair<int,int>P;
vector<P>G[N];
int n,m;

bool DP(int x,int y,int k){
    if(dp[x][y][k]!=-1)return dp[x][y][k];
    for(int i=0;i<G[x].size();i++){
        int v=G[x][i].fi,cost=G[x][i].se;
        if(cost>=k && DP(y,v,cost)==0)    //如果下一步存在先手必败的情况,则这一步先手必胜
            return dp[x][y][k]=1;
    }
    return dp[x][y][k]=0;     //为0表示先手必败
}
int main(){
    cin>>n>>m;
    rep(i,1,m) {
        int u,v;char c;cin>>u>>v>>c;
        G[u].pb(P(v,c));
    }
    memset(dp,-1,sizeof dp);
    rep(i,1,n) rep(j,1,n){
        DP(i,j,0);
    }
    rep(i,1,n) {
        rep(j,1,n)
            printf("%c",dp[i][j][0]?‘A‘:‘B‘);
        puts("");
    }
}

原文地址:https://www.cnblogs.com/00isok/p/10799454.html

时间: 2024-11-01 12:29:04

Codeforces 917B MADMAX (DP+博弈)的相关文章

Codeforces 13C Sequence --DP+离散化

题意:给出一个 n (1 <= n <= 5000)个数的序列 .每个操作可以把 n 个数中的某一个加1 或 减 1.问使这个序列变成非递减的操作数最少是多少 解法:定义dp[i][j]为将前i个数变为以j为结尾的非递减序列的最少操作次数. 则有: dp[i][j] = min(dp[i][j], min(dp[i][k]) + Cost(原来第i个位置上的数转换到j))  (1 <= k <= j) 即前i个数以j结尾的状态可以由前i-1个数以小于等于j的k结尾的状态转移过来,取

hdu4753 状态压缩dp博弈(记忆化搜索写法)

http://acm.hdu.edu.cn/showproblem.php?pid=4753 Problem Description There is a 3 by 3 grid and each vertex is assigned a number. It looks like JiuGongGe, but they are different, for we are not going to fill the cell but the edge. For instance, adding

Codeforces 77C 树形dp + 贪心

题目链接:点击打开链接 题意: 给定n个点, 每个点的豆子数量 下面是一棵树 再给出起点 每走到一个点,就会把那个点的豆子吃掉一颗. 问:回到起点最多能吃掉多少颗豆子 思路:树形dp 对于当前节点u,先把子节点v都走一次. 然后再往返于(u,v) 之间,直到u点没有豆子或者v点没有豆子. dp[u] 表示u点的最大值.a[u] 是u点剩下的豆子数. #include <cstdio> #include <vector> #include <algorithm> #inc

Codeforces 57C Array dp暴力找规律

题目链接:点击打开链接 先是计算非递增的方案, 若非递增的方案数为x, 则非递减的方案数也是x 答案就是 2*x - n 只需求得x即可. 可以先写个n3的dp,然后发现规律是 C(n-1, 2*n-1) 然后套个逆元即可. #include<iostream> #include<cstdio> #include<vector> #include<string.h> using namespace std; #define ll long long #def

Codeforces 413D 2048(dp)

题目连接:Codeforces 413D 2048 题目大意:2048的游戏,两个相同的数x可以变成一个2*x,先给出n,表示在一个1*n的矩阵上面玩2048,规定每次向左移动,并且每次出现一个,给出序列n,表示出现的块的值,0表示既可以是2也可以是4,问说有多少种可能,使得游戏结束后的最大块的值大于等于2^k. 解题思路:dp[i][j][x]表示第i个位置,值为j,x表示先前有没有出现过大于2^k的数: 这种递增的情况可以直接表示为14(总和,以为后面的2,4如果变大,就肯定能和8想合在一起

Codeforces 455A Boredom (dp)

很裸的dp 状态转移方程 dp[i]=max(dp[i-1],dp[i-2]+dp[i]*i) #include<bits/stdc++.h> using namespace std; long long dp[100020]; int main() { int n,a; scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%d",&a); dp[a]++; } for(int i=2;i&

Codeforces 176B 经典DP

非常好的一个题目,CF上的DP都比较经典 题意就是 给定一个串A,B,正好执行K次操作,每次操作可以把 A串从中间切开,并调换两部分的位置,问最后得到B串共有多少种不同的切法(只要中间有一次不同,即视为不同) 首先,题目的一个关键点一定要抓到,就是 ,不管怎么切 然后调换位置,其实串根本没变,你把串想成一个环,从某一点分成两部分并且交换位置,其实就是把串的起点变到了该点,这是很关键也是最机智的一点 然后,我们要发现规律,你纸上模拟也行,推理也行.. 我们发现:1.首先原串(即以0号字母开头的)个

CodeForces 69D Dot (博弈+记忆化)

Description Anton and Dasha like to play different games during breaks on checkered paper. By the 11th grade they managed to play all the games of this type and asked Vova the programmer to come up with a new game. Vova suggested to them to play a ga

Nanami&#39;s Digital Board CodeForces - 434B (棋盘dp)

大意: 给定01矩阵, m个操作, 操作1翻转一个点, 操作2求边界包含给定点的最大全1子矩阵 暴力枚举矩形高度, 双指针统计答案 #include <iostream> #include <algorithm> #include <math.h> #include <cstdio> #include <set> #include <map> #include <string> #include <vector>