PAT甲级——1110 Complete Binary Tree (完全二叉树)

此文章同步发布在CSDN上:https://blog.csdn.net/weixin_44385565/article/details/90317830

1110 Complete Binary Tree (25 分)

Given a tree, you are supposed to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node, and gives the indices of the left and right children of the node. If the child does not exist, a - will be put at the position. Any pair of children are separated by a space.

Output Specification:

For each case, print in one line YES and the index of the last node if the tree is a complete binary tree, or NO and the index of the root if not. There must be exactly one space separating the word and the number.

Sample Input 1:

9
7 8
- -
- -
- -
0 1
2 3
4 5
- -
- -

Sample Output 1:

YES 8

Sample Input 2:

8
- -
4 5
0 6
- -
2 3
- 7
- -
- -

Sample Output 2:

NO 1

题目大意:一棵树有N个节点,从0到N-1进行标记,每一行代表了一个节点的左孩子和右孩子的信息,若没有孩子,以‘-‘代替。要求判断它是否为完全二叉树,若是完全二叉树则输出"YES"以及最后一个节点的值,反之输出“NO”和根节点的值。

思路:建立二叉树 —> 寻找根节点 —> 判断是否为完全二叉树。二叉树用数组储存,将‘-‘转换成-1来标明左孩子或者右孩子为空;用bool数组isRoot来给孩子节点进行标记,然后遍历isRoot寻找根节点;最后进行完全二叉树的判断,判断的依据是:层序遍历该二叉树,1、若当前节点的左孩子为空,右孩子不为空,则非完全二叉树;2、若发现某个节点没有右孩子则进行标记,在这之后入队的节点如果不是叶子节点那么就不是完全二叉树。

 1 #include <iostream>
 2 #include <vector>
 3 #include <string>
 4 #include <queue>
 5 using namespace std;
 6 struct node {
 7     int key, left, right;
 8 };
 9 int getNum(string &s);
10 bool isComplete(vector <node> &tree, int root, int &lastNode);
11 int main()
12 {
13     int N, root, lastNode;
14     scanf("%d", &N);
15     vector <node> tree(N);
16     vector <bool> isRoot(N, true);
17     for (int i = 0; i < N; i++) {
18         string s1,s2;
19         cin >> s1 >> s2;
20         tree[i].key = i;
21         tree[i].left = getNum(s1);
22         tree[i].right = getNum(s2);
23         if (tree[i].left != -1)
24             isRoot[tree[i].left] = false;
25         if (tree[i].right != -1)
26             isRoot[tree[i].right] = false;
27     }
28     for (int i = 0; i < N; i++)
29         if (isRoot[i]) {
30             root = i;
31             break;
32         }
33     bool flag = isComplete(tree, root, lastNode);
34     if (flag)
35         printf("YES %d\n", lastNode);
36     else
37         printf("NO %d\n", root);
38     return 0;
39 }
40 bool isComplete(vector <node> &tree, int root, int &lastNode) {
41     bool flag = false;
42     queue <int> Q;
43     Q.push(root);
44     int t;
45     while (!Q.empty()) {
46         t = Q.front();
47         Q.pop();
48         if (tree[t].left == -1 && tree[t].right != -1)
49             return false;
50         if (flag) {//在标记之后再次发现非叶子节点,不是完全二叉树
51             if (!(tree[t].left == -1 && tree[t].right == -1)) {
52                 return false;
53             }
54         }
55         if (tree[t].right == -1)//如果发现某个节点没有右孩子,就标记下,在这之后进入队列的节点要都是叶子节点才能满足完全二叉树的性质
56             flag = true;
57         if (tree[t].left != -1)
58             Q.push(tree[t].left);
59         if (tree[t].right != -1)
60             Q.push(tree[t].right);
61         if (Q.empty())
62             lastNode = tree[t].key;
63     }
64     return true;
65 }
66 int getNum(string &s) {
67     if (s[0] == ‘-‘)
68         return -1;
69     int n = 0;
70     for (int i = 0; i<s.length(); i++)
71         n = n * 10 + s[i] - ‘0‘;
72     return n;
73 }

原文地址:https://www.cnblogs.com/yinhao-ing/p/10886475.html

时间: 2024-10-11 18:15:13

PAT甲级——1110 Complete Binary Tree (完全二叉树)的相关文章

PAT 1110 Complete Binary Tree[比较]

1110 Complete Binary Tree (25 分) Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (≤20) which is the total nu

1110 Complete Binary Tree (25分) 判断一棵二插树是否是完全二叉树

Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (≤) which is the total number of nodes in the tree -- and he

PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)

题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则即不是. #include <iostream> #include <cstdio> #include <algorithm> #include <string.h> using namespace std; const int maxn=22; int two

【PAT甲级】1110 Complete Binary Tree (25分)

题意: 输入一个正整数N(<=20),代表结点个数(0~N-1),接着输入N行每行包括每个结点的左右子结点,'-'表示无该子结点,输出是否是一颗完全二叉树,是的话输出最后一个子结点否则输出根节点. trick: 用char输入子结点没有考虑两位数的结点??... stoi(x)可以将x转化为十进制整数 AAAAAccepted code: 1 #define HAVE_STRUCT_TIMESPEC 2 #include<bits/stdc++.h> 3 using namespace

PAT (Advanced Level) 1110. Complete Binary Tree (25)

判断一棵二叉树是否完全二叉树. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #include<map> #include<queue> #include<stack> #include<algorithm> using namespace std; int n,root; const int maxn=30; struc

PAT1110:Complete Binary Tree

1110. Complete Binary Tree (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each input file contains one test case. For each case, th

PAT Advanced 1064 Complete Binary Search Tree (30分)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greate

pat(A) 1064. Complete Binary Search Tree(完全二叉树的中序建树)

代码: #include<cstdio> #include<algorithm> #define N 1005 using namespace std; int a[N]; int T[N]; int pos; int n; int cmp(int a,int b) { return a<b; } void Build(int i) { if(i>n) return; int l=i<<1; int r=l+1; Build(l); T[i]=a[pos++

PAT:1064. Complete Binary Search Tree (30) AC

#include<stdio.h> #include<algorithm> using namespace std; const int MAX=1010; int n; int arr[MAX]; //存放原始数组 int arrI=0; int CBT[MAX]; //二叉排序树层序遍历序列[思维]中序遍历在数组中存放的就是层序遍历序列 void inorder(int root) { if(root>n) return; inorder(root*2); CBT[roo