1.矩阵快速幂,用倍增来加速(O(n^3*logk))
2.矩阵求解递推关系第n项(n很大)可以构造矩阵,用矩阵快速幂迅速求出。
3.给定起点和终点求从起点到终点恰好进过k步的方案数可以直接对可达矩阵相乘k次得到结果
4.矩阵乘法的顺序对时间影响比较大(提高Cache命中率),kij最快而且还可以进行稀疏矩阵加速(当a[i][k]为0时没必要进行运算)。
因为最近在搞矩阵,所以准备写一个矩阵模板类。结果遇到不少坑,毕竟平时没怎么使用动态分配内存,只好先用静态数组水过,搞完之后调试很久才写出矩阵的动态版本,主要是开始写模板矩阵的时候没有创建复制构造和重载=,导致类的浅复制,出现很多bug(值很随机)。最后查了好多遍才想到是那里的问题,不过搞完之后对这方面了解更多点了,嘿嘿!
题目:
1.稀疏矩阵乘法
?题意:两个n*n的矩阵相乘(n<=800),结果对3取模(hdu4920)
?思路:先对3取模,所以两个矩阵里面会出现很多0,所以可以先枚举一个矩阵,只有当该位置不是0的时候才和另一个矩阵做乘法,我还用了一下输入挂。
#include <iostream> #include <cstdio> #include <cstdlib> typedef long long ll; #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; int mod = 3; const int buf_len = 4096; char buf[buf_len], *bufb(buf), *bufe(buf + 1); int E = 1; #define readBuf() { if (++ bufb == bufe) bufe = (bufb = buf) + (E=fread(buf, 1, sizeof(buf), stdin)); if(!E)return 0; } #define readInt(_y_) { register int _s_(0); do { readBuf(); } while (!isdigit(*bufb)); do { _s_ = (_s_<<1) + (_s_<<3) + *bufb - '0'; readBuf(); } while (isdigit(*bufb)); _y_ = _s_; } template <typename T> struct Matrix { T ** base; int row,colnum; Matrix(int n = 0,int m = 0):row(n),colnum(m) { base = new T * [n]; for(int i = 0; i < n; i++) base[i] = new T [m]; } Matrix (const Matrix<T> & A) { row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } Matrix operator + (const Matrix <T> &A)const{ Matrix<T> res(row,colnum); for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) { res.base[i][j] = base[i][j] + A.base[i][j]; if(mod)res.base[i][j] %= mod; } } return res; } void operator = (const Matrix<T> & A) { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } T * operator [] (const int & i) { return base[i]; } void setv(const T & val) { for(int i = 0; i < row; i++) for(int j = 0; j < colnum; j++) base[i][j] = val; } Matrix ones(int n) const{ Matrix<T> res(n,n); for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) res.base[i][j] = (T)(i==j); return res; } Matrix operator * (const Matrix<T> & rhs) const { if(colnum != rhs.row) { cerr<<"worng size of two Matrix"<<endl; exit(-1); } Matrix<T> c(row,rhs.colnum); c.setv(T(0)); for(int k = 0; k < colnum; k++) { for(int i = 0; i < row; i++) { T r = base[i][k]; if(!r)continue; for(int j = 0; j < c.colnum; j++) { c[i][j] += r*rhs.base[k][j]; if(mod)c[i][j] %= mod; } } } return c; } Matrix exp(int n) const{ if(row!=colnum) { cerr<<"can't exp on different row and colnum"<<endl; exit(-1); } Matrix<T>res = ones(row),b(*this); while(n > 0) { if(n & 1)res = res * b; b = (b * b); n >>= 1; } return res; } void debug()const{ for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) cout<<base[i][j]<<" \n"[j+1==colnum]; } } ~Matrix() { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; } }; int main(int argc, char const *argv[]) { while(1) { int n;readInt(n); Matrix<int> A(n,n),B(n,n); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { readInt(A[i][j]); A[i][j] %= 3; } } for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { readInt(B[i][j]); B[i][j] %= 3; } } (A*B).debug(); } return 0; }
?uva10655 给三个非负整数p,q,n,求a^n+b^n,其中a+b=p,ab=q(保证结果在10^18以内)
?解决思路:从a^n+b^n入手构造递推关系而且只用p,q表示,手算几项之后会发现f[n] = f[n-1]*p - f[n-2]*q,构造下矩阵然后快速幂。
#include <bits/stdc++.h> typedef long long ll; #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; const int maxn = 2e5 + 10; ll mod = 0; template <typename T> struct Matrix { T ** base; int row,colnum; Matrix(int n = 0,int m = 0):row(n),colnum(m) { base = new T * [n]; for(int i = 0; i < n; i++) base[i] = new T [m]; } Matrix (const Matrix<T> & A) { row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } void operator = (const Matrix<T> & A) { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } T * operator [] (const int & i) { return base[i]; } void setv(const T & val) { for(int i = 0; i < row; i++) for(int j = 0; j < colnum; j++) base[i][j] = val; } Matrix operator * (const Matrix<T> & rhs) const { if(colnum != rhs.row) { cerr<<"worng size of two Matrix"<<endl; exit(-1); } Matrix<T> c(row,rhs.colnum); c.setv(T(0)); for(int k = 0; k < colnum; k++) { for(int i = 0; i < row; i++) { T r = base[i][k]; for(int j = 0; j < c.colnum; j++) { c[i][j] += r*rhs.base[k][j]; if(mod)c[i][j] %= mod; } } } return c; } Matrix exp(int n) { if(row!=colnum) { cerr<<"can't exp on different row and colnum"<<endl; exit(-1); } Matrix<T>res(row,colnum),b(*this); res.setv(T(0)); for(int i = 0; i < row; i++) res.base[i][i] = T(1); while(n > 0) { if(n & 1)res = res * b; b = (b * b); n >>= 1; } return res; } void debug() { for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) cout<<base[i][j]<<" \n"[j+1==colnum]; } } ~Matrix() { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; } }; int main(int argc, char const *argv[]) { int p,q,n; while(scanf("%d%d%d",&p,&q,&n)==3) { if(n==0)puts("2"); else { Matrix<ll> A(1,2); A[0][0] = p;A[0][1] = 2; Matrix<ll> B(2,2); B[0][0] = p;B[0][1] = 1; B[1][0] = -q; B[1][1] = 0; printf("%lld\n", (A*B.exp(n-1))[0][0]); } } return 0; }
?poj3233 A是一个n*n矩阵,求S = (A + A^2 + A^3 +… + A^k)%m,n<30,k<10^9
思路:矩阵快速幂加二分。如果我们求出了x = A+A^2+...A^(k/2),那么y = A^(k/2+1)+A^(k/2+2)+...A^k,可以由x的乘A^
(k/2) + {A^k|(当k为奇数时才需要};
#include <iostream> #include <cstdio> #include <cstdlib> typedef long long ll; #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; const int maxn = 2e5 + 10; int mod = 0; template <typename T> struct Matrix { T ** base; int row,colnum; Matrix(int n = 0,int m = 0):row(n),colnum(m) { base = new T * [n]; for(int i = 0; i < n; i++) base[i] = new T [m]; } Matrix (const Matrix<T> & A) { row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } Matrix operator + (const Matrix <T> &A)const{ Matrix<T> res(row,colnum); for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) { res.base[i][j] = base[i][j] + A.base[i][j]; if(mod)res.base[i][j] %= mod; } } return res; } void operator = (const Matrix<T> & A) { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } T * operator [] (const int & i) { return base[i]; } void setv(const T & val) { for(int i = 0; i < row; i++) for(int j = 0; j < colnum; j++) base[i][j] = val; } Matrix ones(int n) const{ Matrix<T> res(n,n); for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) res.base[i][j] = (T)(i==j); return res; } Matrix operator * (const Matrix<T> & rhs) const { if(colnum != rhs.row) { cerr<<"worng size of two Matrix"<<endl; exit(-1); } Matrix<T> c(row,rhs.colnum); c.setv(T(0)); for(int k = 0; k < colnum; k++) { for(int i = 0; i < row; i++) { T r = base[i][k]; if(!r)continue; for(int j = 0; j < c.colnum; j++) { c[i][j] += r*rhs.base[k][j]; if(mod)c[i][j] %= mod; } } } return c; } Matrix exp(int n) const{ if(row!=colnum) { cerr<<"can't exp on different row and colnum"<<endl; exit(-1); } Matrix<T>res = ones(row),b(*this); while(n > 0) { if(n & 1)res = res * b; b = (b * b); n >>= 1; } return res; } void debug()const{ for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) cout<<base[i][j]<<" \n"[j+1==colnum]; } } ~Matrix() { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; } }; template<typename T>Matrix<T> gao(const Matrix<T> &A,int k) { if(k==0)return A.ones(A.row); if(k==1)return A; Matrix<T> c = gao(A,k>>1); Matrix<T> t = A.exp(k>>1); c = c + c*t; if(k&1)c = c + t*t*A; return c; } int main(int argc, char const *argv[]) { int n,k; while(scanf("%d%d%d",&n,&k,&mod)==3) { Matrix<int>A(n,n); for(int i = 0; i < A.row; i++) for(int j = 0; j < A.colnum; j++) scanf("%d",&A[i][j]); (gao(A,k)).debug(); } return 0; }
?hdu1588 f(0)=0 f(1)=1 f(n)=f(n-1)+f(n-2) (n>=2),g(i)=k*i+b ,给定k,b,n,求sigma(f(g(i))(0<=i<=n)
?(k,b,n<=1,000,000,000,有取模)
因为g是一个等差数列,所以f是个f(g)是个等比矩阵。和上题思路一样,对公比的幂求和之后乘上初始值
#include <iostream> #include <cstdio> #include <cstdlib> typedef long long ll; #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; const int maxn = 2e5 + 10; ll mod = 0; template <typename T> struct Matrix { T ** base; int row,colnum; Matrix(int n = 0,int m = 0):row(n),colnum(m) { base = new T * [n]; for(int i = 0; i < n; i++) base[i] = new T [m]; } Matrix (const Matrix<T> & A) { row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } Matrix operator + (const Matrix <T> &A)const{ Matrix<T> res(row,colnum); for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) { res.base[i][j] = base[i][j] + A.base[i][j]; if(mod)res.base[i][j] %= mod; } } return res; } void operator = (const Matrix<T> & A) { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } T * operator [] (const int & i) { return base[i]; } void setv(const T & val) { for(int i = 0; i < row; i++) for(int j = 0; j < colnum; j++) base[i][j] = val; } Matrix ones(int n) const{ Matrix<T> res(n,n); for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) res.base[i][j] = (T)(i==j); return res; } Matrix operator * (const Matrix<T> & rhs) const { if(colnum != rhs.row) { cerr<<"worng size of two Matrix"<<endl; exit(-1); } Matrix<T> c(row,rhs.colnum); c.setv((T)0); for(int k = 0; k < colnum; k++) { for(int i = 0; i < row; i++) { T r = base[i][k]; if(!r)continue; for(int j = 0; j < c.colnum; j++) { c[i][j] += r*rhs.base[k][j]; if(mod)c[i][j] %= mod; } } } return c; } Matrix exp(int n) const{ if(row!=colnum) { cerr<<"can't exp on different row and colnum"<<endl; exit(-1); } Matrix<T>res = ones(row),b(*this); while(n > 0) { if(n & 1)res = res * b; b = (b * b); n >>= 1; } return res; } void debug()const{ for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) cout<<base[i][j]<<" \n"[j+1==colnum]; } } ~Matrix() { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; } }; template<typename T>Matrix<T> gao(const Matrix<T> &A,int k) { if(k==0)return A.ones(A.row); if(k==1)return A; Matrix<T> c = gao(A,k>>1); Matrix<T> t = A.exp(k>>1); c = c + c*t; if(k&1)c = c + t*t*A; return c; } int main(int argc, char const *argv[]) { int n,k,b; Matrix<ll> a0(1,2); a0[0][0] = 1; a0[0][1] = 0; Matrix<ll> q0(2,2); q0.setv(1); q0[1][1] = 0; while(scanf("%d%d%d%I64d",&k,&b,&n,&mod)==4) { Matrix<ll> A = a0*(q0.exp(b)); Matrix<ll> Q = q0.exp(k); if(n==1) printf("%I64d\n", A[0][1]); else { printf("%I64d\n",(A*(Q.ones(Q.row) + gao(Q,n-1)))[0][1]); } } return 0; }
?题意:给出n,求 (n<=10^9)
?
?F(k)是标准fibonacci数列,C(n,k)是组合数
?结果对1e9+7取模
打表之后发现结果是F(2n)。证明如下
#include <iostream> #include <cstdio> #include <cstdlib> typedef long long ll; #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; const int maxn = 2e5 + 10; ll mod = 0; template <typename T> struct Matrix { T ** base; int row,colnum; Matrix(int n = 0,int m = 0):row(n),colnum(m) { base = new T * [n]; for(int i = 0; i < n; i++) base[i] = new T [m]; } Matrix (const Matrix<T> & A) { row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } Matrix operator + (const Matrix <T> &A)const{ Matrix<T> res(row,colnum); for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) { res.base[i][j] = base[i][j] + A.base[i][j]; if(mod)res.base[i][j] %= mod; } } return res; } void operator = (const Matrix<T> & A) { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } T * operator [] (const int & i) { return base[i]; } void setv(const T & val) { for(int i = 0; i < row; i++) for(int j = 0; j < colnum; j++) base[i][j] = val; } Matrix ones(int n) const{ Matrix<T> res(n,n); for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) res.base[i][j] = (T)(i==j); return res; } Matrix operator * (const Matrix<T> & rhs) const { if(colnum != rhs.row) { cerr<<"worng size of two Matrix"<<endl; exit(-1); } Matrix<T> c(row,rhs.colnum); c.setv((T)0); for(int k = 0; k < colnum; k++) { for(int i = 0; i < row; i++) { T r = base[i][k]; if(!r)continue; for(int j = 0; j < c.colnum; j++) { c[i][j] += r*rhs.base[k][j]; if(mod)c[i][j] %= mod; } } } return c; } Matrix exp(int n) const{ if(row!=colnum) { cerr<<"can't exp on different row and colnum"<<endl; exit(-1); } Matrix<T>res = ones(row),b(*this); while(n > 0) { if(n & 1)res = res * b; b = (b * b); n >>= 1; } return res; } void debug()const{ for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) cout<<base[i][j]<<" \n"[j+1==colnum]; } } ~Matrix() { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; } }; template<typename T>Matrix<T> gao(const Matrix<T> &A,int k) { if(k==0)return A.ones(A.row); if(k==1)return A; Matrix<T> c = gao(A,k>>1); Matrix<T> t = A.exp(k>>1); c = c + c*t; if(k&1)c = c + t*t*A; return c; } int main(int argc, char const *argv[]) { int n,k,b; Matrix<ll> a0(1,2); a0[0][0] = 1; a0[0][1] = 0; Matrix<ll> q0(2,2); q0.setv(1); q0[1][1] = 0; while(scanf("%d%d%d%I64d",&k,&b,&n,&mod)==4) { Matrix<ll> A = a0*(q0.exp(b)); Matrix<ll> Q = q0.exp(k); if(n==1) printf("%I64d\n", A[0][1]); else { printf("%I64d\n",(A*(Q.ones(Q.row) + gao(Q,n-1)))[0][1]); } } return 0; }
hdu 2157给出一个n个点,m条边的有向图,T次询问,每次输入a,b,k问从a到b经过k个点的方案是多少,直接快速幂。输出
#include <iostream> #include <cstdio> #include <cstdlib> typedef long long ll; #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; const int maxn = 2e5 + 10; ll mod = 0; template <typename T> struct Matrix { T ** base; int row,colnum; Matrix(int n = 0,int m = 0):row(n),colnum(m) { base = new T * [n]; for(int i = 0; i < n; i++) base[i] = new T [m]; } Matrix (const Matrix<T> & A) { row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } Matrix operator + (const Matrix <T> &A)const{ Matrix<T> res(row,colnum); for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) { res.base[i][j] = base[i][j] + A.base[i][j]; if(mod)res.base[i][j] %= mod; } } return res; } void operator = (const Matrix<T> & A) { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; row = A.row; colnum = A.colnum; base = new T *[row]; for(int i = 0; i < row; i++) { base[i] = new T [colnum]; for(int j = 0; j < colnum; j++) base[i][j] = A.base[i][j]; } } T * operator [] (const int & i) { return base[i]; } void setv(const T & val) { for(int i = 0; i < row; i++) for(int j = 0; j < colnum; j++) base[i][j] = val; } Matrix ones(int n) const{ Matrix<T> res(n,n); for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) res.base[i][j] = (T)(i==j); return res; } Matrix operator * (const Matrix<T> & rhs) const { if(colnum != rhs.row) { cerr<<"worng size of two Matrix"<<endl; exit(-1); } Matrix<T> c(row,rhs.colnum); c.setv((T)0); for(int k = 0; k < colnum; k++) { for(int i = 0; i < row; i++) { T r = base[i][k]; if(!r)continue; for(int j = 0; j < c.colnum; j++) { c[i][j] += r*rhs.base[k][j]; if(mod)c[i][j] %= mod; } } } return c; } Matrix exp(int n) const{ if(row!=colnum) { cerr<<"can't exp on different row and colnum"<<endl; exit(-1); } Matrix<T>res = ones(row),b(*this); while(n > 0) { if(n & 1)res = res * b; b = (b * b); n >>= 1; } return res; } void debug()const{ for(int i = 0; i < row; i++) { for(int j = 0; j < colnum; j++) cout<<base[i][j]<<" \n"[j+1==colnum]; } } ~Matrix() { for(int i = 0; i < row; i++) delete [] base[i]; delete [] base; } }; int main(int argc, char const *argv[]) { int n,m; mod = 1000; while(scanf("%d%d",&n,&m)==2) { if(n+m==0)return 0; Matrix<int> A(n,n); A.setv(0); while(m--) { int u,v;scanf("%d%d",&u,&v); A[u][v] = 1; } int T;scanf("%d",&T); while(T--) { int s,t,k; scanf("%d%d%d",&s,&t,&k); printf("%d\n",A.exp(k)[s][t]); } } return 0; }
FZU 2173 给出一个n个点,H条边的有向图,还有输入的k,经过一条边需要1s,有一个花费w,问从1到n恰好k秒的最小花费是多少,其实就是跑k遍floyd,可以用矩阵快速幂加速一下,乘法换加法就ok,这题没用模板写
#include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> typedef long long ll; const ll inf = 1e17 + 10; #define Type ll #define SIZER 50 #define SIZEC 50 #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; int mod = 0; const int maxn = 5000000 + 4; struct Matrix { Type a[SIZER][SIZEC]; int row,colunm; Matrix(int n = 1,int m = 1):row(n),colunm(m){} bool samerc(const Matrix & rhs) const{ return rhs.row == row && rhs.colunm == colunm; } bool canmul(const Matrix & rhs) const{ return colunm == rhs.row; } Matrix operator + (const Matrix & rhs) const{ if(!samerc(rhs)) { puts("size Dont match"); exit(-1); } Matrix c(row,colunm); for(int i = 0; i < row; i++) for(int j = 0; j < colunm; j++) { c.a[i][j] = a[i][j] + rhs.a[i][j]; if(mod) c.a[i][j] %= mod; } return c; } void one() { for(int i = 0; i < row; i++) for(int j = 0; j < colunm; j++) a[i][j] = (i==j); } void debug() { for(int i = 0; i < row; i++) for(int j = 0; j < colunm; j++) cout<<a[i][j]<<" \n"[j+1==colunm]; } void Zero() { memset(a,0,sizeof a); } Matrix operator * (const Matrix & rhs) const{ if(!canmul(rhs)) { puts("can‘t mul Matrix with wrong size"); exit(-1); } Matrix c(row,rhs.colunm); for(int i = 0; i < c.row; i++) { for(int j = 0; j < c.colunm; j++) { c.a[i][j] = inf; } } for(int i = 0; i < row; i++) for(int j = 0; j < rhs.colunm; j++) for(int k = 0; k < colunm; k++) c.a[i][j] = min(c.a[i][j],a[i][k] + rhs.a[k][j]); return c; } }; Matrix quick_exp(const Matrix & A,int k) { Matrix res = A,b = A; k--; while(k > 0) { if(k&1)res = res * b; k >>= 1; b = b*b; } return res; } int main() { int T;scanf("%d",&T); while(T--) { ll n,h,k;scanf("%I64d%I64d%I64d",&n,&h,&k); Matrix A(n,n); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { A.a[i][j] = inf; } } while(h--) { ll u,v,w;scanf("%I64d%I64d%I64d",&u,&v,&w); u--,v--; A.a[u][v] = min(A.a[u][v],w); } ll ans = quick_exp(A,k).a[0][n-1]; if(ans>= inf) ans = -1; printf("%I64d\n",ans); } return 0; }