[leetcode]Edit Distance @ Python

原题地址:https://oj.leetcode.com/problems/edit-distance/

题意:

Given two words word1 and word2, find the
minimum number of steps required to
convert word1 to word2. (each operation is
counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。

代码:


class Solution:
# @return an integer
def minDistance(self, word1, word2):
m=len(word1)+1; n=len(word2)+1
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(n):
dp[0][i]=i
for i in range(m):
dp[i][0]=i
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))
return dp[m-1][n-1]

时间: 2024-09-30 15:15:25

[leetcode]Edit Distance @ Python的相关文章

[LeetCode] Edit Distance(很好的DP)

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a character c) Repla

Leetcode:Edit Distance 解题报告

Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a chara

Leetcode:Edit Distance 字符串编辑距离

原题戳我 Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a character c)

LeetCode - Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a character c) Repla

LeetCode:Edit Distance(字符串编辑距离DP)

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a character c) Repla

Edit Distance (or Levenshtein Distance) python solution for leetcode EPI 17.2

https://oj.leetcode.com/problems/edit-distance/ Edit Distance  Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted

[LeetCode] One Edit Distance 一个编辑距离

Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance的拓展,然而这道题并没有那道题难,这道题只让我们判断两个字符串的编辑距离是否为1,那么我们只需分下列三种情况来考虑就行了: 1. 两个字符串的长度之差大于1,那么直接返回False 2. 两个字符串的长度之差等于1,那么长的那个字符串去掉一个字符,剩下的应该和短的字符串相同 3. 两个字符串的长度之

leetcode day4 -- Binary Tree Postorder(Preorder) Traversal && Edit Distance

 1.Binary Tree Postorder Traversal Given a binary tree, return the postorder traversal of its nodes' values. For example: Given binary tree {1,#,2,3}, 1 2 / 3 return [3,2,1]. Note: Recursive solution is trivial, could you do it iteratively? 分析:后续遍历

【leetcode】Edit Distance 详解

下图为TI C6xx DSP Nyquist总线拓扑图,总线连接了master与slave,提供了高速的数据传输.有很多种速率不同的总线,如图中的红色方框,最高速总线为CPU/2 TeraNet SCR(即VBUSM SCR),带宽为256bit,其他低速总线为CPU/3,CPU/6,带宽参考图中所示.总线之间用Bridge(桥)连接,作用包括转换总线的速率,使之与所流向总线的速率相同等. 在具体应用中,各种速率的总线完全可以满足复杂的数据传输,而数据传输的瓶颈往往在于连接总线之间的Bridge