【bzoj1334】[Baltic2008]Elect

题目描述

N个政党要组成一个联合内阁,每个党都有自己的席位数. 现在希望你找出一种方案,你选中的党的席位数要大于总数的一半,并且联合内阁的席位数越多越好. 对于一个联合内阁,如果某个政党退出后,其它党的席位仍大于总数的一半,则这个政党被称为是多余的,这是不允许的.

输入

第一行给出有多少个政党.其值小于等于300 下面给出每个政党的席位数.总席位数小于等于 100000

输出

你的组阁方案中最多能占多少个席位.

样例输入

4

1 3 2 4

样例输出

7



题解

从大到小排序,然后01背包。注意状态只能从[1,sum/2]中转移。

 1 #include <cstdio>
 2 #include <algorithm>
 3 using namespace std;
 4 int a[301] , f[100001];
 5 int main()
 6 {
 7     int n , i , j , sum = 0 , ans = 0;
 8     scanf("%d" , &n);
 9     for(i = 1 ; i <= n ; i ++ )
10         scanf("%d" , &a[i]) , sum += a[i];
11     sort(a + 1 , a + n + 1);
12     f[0] = 1;
13     for(i = n ; i >= 1 ; i -- )
14         for(j = sum / 2 + a[i] ; j >= a[i] ; j -- )
15             if(f[j - a[i]])
16                 f[j] = 1 , ans = max(ans , j);
17     printf("%d\n" , ans);
18     return 0;
19 }
时间: 2024-10-23 18:20:52

【bzoj1334】[Baltic2008]Elect的相关文章

【Kettle】4、SQL SERVER到SQL SERVER数据转换抽取实例

1.系统版本信息 System:Windows旗舰版 Service Pack1 Kettle版本:6.1.0.1-196 JDK版本:1.8.0_72 2.连接数据库 本次实例连接数据库时使用全局变量. 2.1 创建新转换:spoon启动后,点击Ctrl+N创建新转换 2.2 在新转换界面中,右键点击DB连接,系统会弹出[数据库连接]界面. windows系统环境下,可用${}获取变量的内容. 说明: 连接名称:配置数据源使用名称.(必填) 主机名称:数据库主机IP地址,此处演示使用本地IP(

详解go语言的array和slice 【二】

上一篇  详解go语言的array和slice [一]已经讲解过,array和slice的一些基本用法,使用array和slice时需要注意的地方,特别是slice需要注意的地方比较多.上一篇的最后讲解到创建新的slice时使用第三个索引来限制slice的容量,在操作新slice时,如果新slice的容量大于长度时,添加新元素依然后使源的相应元素改变.这一篇里我会讲解到如何避免这些问题,以及迭代.和做为方法参数方面的知识点. slice的长度和容量设置为同一个值 如果在创建新的slice时我们把

【转载】C++拷贝构造函数(深拷贝,浅拷贝)

对于普通类型的对象来说,它们之间的复制是很简单的,例如:int a=88;int b=a; 而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各种成员变量.下面看一个类对象拷贝的简单例子. #include <iostream>using namespace std;class CExample {private:     int a;public:     CExample(int b)     { a=b;}     void Show ()     {        cout<

【BZOJ】1799: [Ahoi2009]self 同类分布

[题意]给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1 ≤ a ≤ b ≤ 10^18 [算法]数位DP [题解] 感觉这种方法很暴力啊. 枚举数位和1~162(不能枚举0,不然会模0,相当于除0),记忆化f[pos][sum][val],sum表示当前数位和,val表示数字取模枚举的数位和. 每次sum+i和(val*10+i)%MOD转移. sum用减法优化,即记忆化(MOD-sum),但是枚举过程中都要memset,导致效率低下,记忆化效果很差. 要什么方法才能跑1.3s

【BZOJ4942】[Noi2017]整数 线段树+DFS(卡过)

[BZOJ4942][Noi2017]整数 题目描述去uoj 题解:如果只有加法,那么直接暴力即可...(因为1的数量最多nlogn个) 先考虑加法,比较显然的做法就是将A二进制分解成log位,然后依次更新这log位,如果最高位依然有进位,那么找到最高位后面的第一个0,将中间的所有1变成0,那个0变成1.这个显然要用到线段树,但是复杂度是nlog2n的,肯定过不去. 于是我在考场上yy了一下,这log位是连续的,我们每次都要花费log的时间去修改一个岂不是很浪费?我们可以先在线段树上找到这段区间

【BZOJ4945】[Noi2017]游戏 2-SAT

[BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么不是B,所以直接2^8枚举所有x就行了.然后就变成了一个2-SAT问题.假设有两场游戏1,2,分别可以使用的地图为A1,A2,B1,B2,如果有一个限制是1 A 2 A,那么选A1就必须选A2,然后我这个沙茶就开开心心的拿了55分. 为什么不对?我建出来的图显然不对偶啊!考虑逆否命题,选A1就必须选

【BZOJ】2337: [HNOI2011]XOR和路径

[算法]期望+高斯消元 [题解]因为异或不能和期望同时运算,所以必须转为加乘 考虑拆位,那么对于边权为1取反,边权为0不变. E(x)表示从x出发到n的路径xor期望. 对于点x,有E(x)=Σ(1-E(y))(边权1)||E(y)(边权0)/t[x]  t[x]为x的度. 那么有n个方程,整体乘上t[x]确保精度,右项E(x)移到左边--方程可以各种变形. 每次计算完后*(1<<k)就是贡献. 逆推的原因在于n不能重复经过,而1能重复经过,所以如果计算"来源"不能计算n,

【BZOJ】[HNOI2009]有趣的数列

[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为-1,做奇数标为+1,显然当偶数多于奇数时不合法,因为它压不住后面的奇数. 然后其实这种题目,打表就可知啦--QAQ 然后问题就是求1/(n+1)*C(2n,n)%p了,p不一定是素数. 参考bzoj礼物的解法. 看到网上清一色的素数筛+分解质因数解法,不解了好久,感觉写了假的礼物-- 后来觉得礼物的做法才比

【Vue】详解Vue生命周期

Vue实例的生命周期全过程(图) (这里的红边圆角矩形内的都是对应的Vue实例的钩子函数) 在beforeCreate和created钩子函数间的生命周期 在beforeCreate和created之间,进行数据观测(data observer) ,也就是在这个时候开始监控data中的数据变化了,同时初始化事件 created钩子函数和beforeMount间的生命周期 对于created钩子函数和beforeMount间可能会让人感到有些迷惑,下面我就来解释一下: el选项的有无对生命周期过程