caffe简易上手指南(三)—— 使用模型进行fine tune

之前的教程我们说了如何使用caffe训练自己的模型,下面我们来说一下如何fine tune。

所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型。fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中。

fine tune的好处在于不用完全重新训练模型,从而提高效率,因为一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine tune能够让我们在比较少的迭代次数之后得到一个比较好的效果。在数据量不是很大的情况下,fine tune会是一个比较好的选择。但是如果你希望定义自己的网络结构的话,就需要从头开始了。

这里采用一个实际的例子,钱币分类

1、我们收集了2W张图片,将其中4000张作为测试集,剩下作为训练集。

2、接着我们使用上一篇博客中的方法,生成words.txt、train.txt、test.txt三个文件,这里可以不用生成lmdb,因为caffe支持直接指定图片文件。

3、编辑配置文件,这里我们参考finetune_flickr_style例子(它是用caffenet的训练结果进行finetune的),拷贝其配置文件:

solver.prototxt

net: "examples/money_test/fine_tune/train_val.prototxt"
test_iter: 20
test_interval: 50
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 2000
display: 1
max_iter: 10000
momentum: 0.9
weight_decay: 0.0005
snapshot: 1000
snapshot_prefix: "examples/money_test/fine_tune/finetune_money"
solver_mode: CPU 

train_val.prototxt

其实fine tune使用的网络跟原有网络基本一样,只不过每层调整了一些参数,具体可以参照finetune_flickr_style和caffenet网络配置的对比

name: "FlickrStyleCaffeNet"
layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  image_data_param {
    source: "examples/money_test/data/train.txt"
    batch_size: 50
    new_height: 256
    new_width: 256
  }
}
layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  image_data_param {
    source: "examples/money_test/data/test.txt"
    batch_size: 50
    new_height: 256
    new_width: 256
  }
}
..........
layer {
  name: "fc8_flickr"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8_flickr"
  # lr_mult is set to higher than for other layers, because this layer is starting from random while the others are already trained
  param {
    lr_mult: 10
    decay_mult: 1
  }
  param {
    lr_mult: 20
    decay_mult: 0
  }
  inner_product_param {
    num_output: 17    #这里我们的分类数目
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
.....

deploy.prototxt

用于实际分类时的网络

.........
layer {
  name: "fc8_flickr"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8_flickr"
  # lr_mult is set to higher than for other layers, because this layer is starting from random while the others are already trained
  param {
    lr_mult: 10
    decay_mult: 1
  }
  param {
    lr_mult: 20
    decay_mult: 0
  }
  inner_product_param {
    num_output: 17
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
...........

4、开始训练

./build/tools/caffe train -solver examples/money_test/fine_tune/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel

其中model指定的是caffenet训练好的model。

使用fine tune的效果比较好,经过3400多次迭代后,测试集上正确率达到92%,实际测试效果也比较理想。这也许就是深度学习的优势,不需要仔细地挑选特征,只要数据足够,也能得到不错的效果。

时间: 2024-10-31 21:27:57

caffe简易上手指南(三)—— 使用模型进行fine tune的相关文章

caffe简易上手指南(一)—— 运行cifar例子

简介 caffe是一个友好.易于上手的开源深度学习平台,主要用于图像的相关处理,可以支持CNN等多种深度学习网络. 基于caffe,开发者可以方便快速地开发简单的学习网络,用于分类.定位等任务,也可以用于科研,在其源码基础上进行修改,实现自己的算法. 本文的主要目的,是介绍caffe的基本使用方法,希望通过本文,能让普通的工程师可以使用caffe训练自己的简单模型. 本文主要包括以下内容:运行caffe的例子训练cifar训练集.使用别人定义好的网络训练自己的数据.使用训练好的模型fine tu

caffe简易上手指南(二)—— 训练我们自己的数据

训练我们自己的数据 本篇继续之前的教程,下面我们尝试使用别人定义好的网络,来训练我们自己的网络. 1.准备数据 首先很重要的一点,我们需要准备若干种不同类型的图片进行分类.这里我选择从ImageNet上下载了3个分类的图片(Cat,Dog,Fish). 图片需要分两批:训练集(train).测试集(test),一般训练集与测试集的比例大概是5:1以上,此外每个分类的图片也不能太少,我这里每个分类大概选了5000张训练图+1000张测试图. 找好图片以后,需要准备以下文件: words.txt:分

UnityShader快速上手指南(三)

简介 这一篇还是一些基本的shader操作:裁剪.透明和法向量的应用 (纠结了很久写不写这些,因为代码很简单,主要是些概念上的东西) 先来看下大概的效果图:(从左到右依次是裁剪,透明,加了法向量的透明) 裁剪 代码 Shader "LT/Lesson3_Cull" { Properties { _Color ("Color", Color) = (1, 1, 1, 1) } SubShader { Pass { Cull Off CGPROGRAM #pragma

Android SDK上手指南 3:用户交互

在这篇教程中,我们将对之前所添加的Button元素进行设置以实现对用户点击的检测与响应.为了达成这一目标,我们需要在应用程序的主Activity类中略微涉及Java编程内容.如果大家在Java开发方面的经验不太丰富也没必要担心,只要按步骤进行即可完成学习.我们将在本系列的下一篇文章中深入探讨Java语法,从而保证大家了解初步Android开发任务中所必需的编程语言知识. 大家可以在Android当中以多种不同方式实现用户交互.我们将学习两种最为典型的处理方案,从而实现应用按钮对用户点击的感应--

Rancher 快速上手指南操作(1)

Rancher 快速上手指南操作(1)该指南知道用户如何快速的部署Rancher Server 管理容器.前提是假设你的机器已经安装好docker了.1 确认 docker 的版本,下面是 ubuntu 的输出 [#63#[email protected] ~]$sudo docker version [sudo] password for cloudsoar: Client: Version:      1.9.1 API version:  1.21 Go version:   go1.4.

Model Maker上手指南

Model Maker上手指南 目录 1.MM可爱的脸 2.MM中的工程Project 3.新建类图 4.添加类成员 5.实现类的方法 6.生成Delphi代码 7.逆向到模型 8.完全的逆向工程 作者:郭方明 完成日期:2005-12-06 version 1.0 联系信箱:[email protected] 注:转载文章,请注明作者信息. 引文: 本文通过一个简单的例子介绍使用MM(ModelMaker)设计类图和生成Delphi代码,以及代码逆向同步的过程:让你在最短的时间内上手MM. 编

Django学习笔记(三)—— 模型 model

疯狂的暑假学习之 Django学习笔记(三)-- 模型 model 参考:<The Django Book> 第5章 1.setting.py 配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.', # 用什么数据库管理系统 'NAME': '', # 数据库名称,如果用sqlite,要写完整路径 'USER': '', # 如果用sqlite,这个不用写 'PASSWORD': '', # 如果用sqlite,这个不用写

android快速上手(三)常用控件使用

完成了android的第一个程序HelloWorld,下面就开始控件的学习,下面是一些常见的控件. (一)TextView 简单的文本描述 (二)EditText 编辑框,输入文字信息 (三)Button 按钮,点击后会触发点击事件,可以对事件进行处理 (四)ImageView 图片控件,可以加载图片显示 (五)ListView 列表,需要跟适配器Adapter结合,适配器提供数据 (六)Toast 闪现提示语,常用于普通的提示文本,只显示一小段时间自动消失 (七)ScrollView 一般用于

官方文档 恢复备份指南三 Recovery Manager Architecture

本节讨论以下问题: About the RMAN Environment                        关于RMAN环境 RMAN Command-Line Client                            RMAN命令行 RMAN Channels                                                      RMAN通道 RMAN Repository