lightoj1326_第二类Stirling

题目链接http://lightoj.com/volume_showproblem.php?problem=1326

1051 - Good or Bad

   PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB

A string is called bad if it has 3 vowels in a row, or 5 consonants in a row, or both. A string is called good if it is not bad. You are given a string s, consisting of uppercase letters (‘A‘-‘Z‘) and question marks (‘?‘). Return "BAD" if the string is definitely bad (that means you cannot substitute letters for question marks so that the string becomes good), "GOOD" if the string is definitely good, and "MIXED" if it can be either bad or good.

The letters ‘A‘, ‘E‘, ‘I‘, ‘O‘, ‘U‘ are vowels, and all others are consonants.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case begins with a non-empty string with length no more than 50.

Output

For each case of input you have to print the case number and the result according to the description.

Sample Input

Output for Sample Input


5

FFFF?EE

HELLOWORLD

ABCDEFGHIJKLMNOPQRSTUVWXYZ

HELLO?ORLD

AAA


Case 1: BAD

Case 2: GOOD

Case 3: BAD

Case 4: MIXED

Case 5: BAD

第一类Stirling数 s(p,k)

    

s(p,k)的一个的组合学解释是:将p个物体排成k个非空循环排列的方法数。

s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1

边界条件:s(p,0)=0 ,p>=1  s(p,p)=1  ,p>=0

 

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);

也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。

 

第二类Stirling数 S(p,k)

   

S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。

k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。

   

S(p,k)的递推公式是:S(p,k)=k*S(p-1,k)+S(p-1,k-1) ,1<= k<=p-1

边界条件:S(p,p)=1 ,p>=0    S(p,0)=0 ,p>=1

  

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);

可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。

  

第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。

 1 #include <algorithm>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cstdlib>
 5 #include <cstdio>
 6 #include <vector>
 7 #include <ctime>
 8 #include <queue>
 9 #include <list>
10 #include <set>
11 #include <map>
12 using namespace std;
13 #define INF 0x3f3f3f3f
14 typedef long long LL;
15
16 const int mod = 10056;
17 LL res[1010][1010], ans[1010][1010], x[1010], y[1010];
18 void init()
19 {
20     x[1] = 1;
21     for(int i = 2; i <= 1000; i++)
22         x[i] = (x[i-1] * i) % mod;
23     memset(res, 0, sizeof(res));
24     res[1][1] = 1, y[1] = 1;
25     for(int i = 2; i <= 1000; i++)
26     {
27         for(int j = 1; j <= i; j++)
28         {
29             res[i][j] = (j*res[i-1][j]%mod + res[i-1][j-1])%mod;
30             ans[i][j] = (res[i][j] * x[j]) % mod;
31             y[i] = (y[i]+ans[i][j]) % mod;
32         }
33     }
34 }
35 int main()
36 {
37     int t, n;
38     init();
39     scanf("%d", &t);
40     for(int ca = 1; ca <= t; ca++)
41     {
42         scanf("%d", &n);
43         printf("Case %d: %lld\n", ca, (y[n]+mod)%mod);
44     }
45     return 0;
46 }

时间: 2024-10-23 16:43:52

lightoj1326_第二类Stirling的相关文章

HDU 2643 Rank:第二类Stirling数

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2643 题意: 有n个个选手参赛,问排名有多少种情况(可以并列). 题解: 简化问题: 将n个不同的元素放到i个有差别的盒子中,情况数为P(n,i),求∑P(n,i) (1<=i<=n) 再简化: 将n个不同的元素放到i个无差别的盒子中,情况数为S(n,i),求∑( S(n,i)*i! ) (1<=i<=n) 哇这是第二类Stirling数 ( ̄▽ ̄)~* 递推式:s(n,k) = s(

poj 1671 Rhyme Schemes 第二类Stirling数

题意: 求s(n,0)+s(n,1)+...s(n,n),s(i,j)为第二类Stirling数. 分析: 有递推公式s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1. 代码: //poj 1671 //sep9 #include<iostream> using namespace std; double s[64][64]; double sum[64]; int main() { for(int i=0;i<=50;++i){ s[i

[组合数学] 第一类,第二类Stirling数,Bell数

一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在拿些盒子并不重要,唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么. 递推公式有:S(p,p)=1 (p>=0)         S(p,0)=0  (p>=1)         S(p,k)=k*S(p-1,k)+S(p-1,k-1)   (1<=k<=p-1) .考虑将前p个正整数,1,2,.....p的集合作为要被

[ACM] FZU 1570 集合划分问题( 不同小球放入相同盒子,第二类Stirling数)

Problem Description n个元素的集合{1,2,...,n}可以划分若干个非空子集.例如,当n=4时,集合{1,2,3,4}可以划分为15个不同的非空子集如下: {{1},{2},{3},{4}}, {{1,2},{3},{4}}, {{1,3},{2},{4}}, {{1,4},{2},{3}}, {{2,3},{1},{4}}, {{2,4},{1},{3}}, {{3,4},{1},{2}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,

第二类Stirling数初探 By cellur925

上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验,逃.) 一.什么是第二类Stirling数 第二类斯特林数 S(n,k):把 n 个元素划分成 k 个集合的方案数.  这个问题说的实际一点,就比如说,有n个互异的小球,把他们放入m个盒子里,盒子里不允许为空的方案数.我们设s(i,j)表示放到i个小球,j个盒子的方案数. 那么对于每个小球,当前我们有两种

组合计数 &amp;&amp; Stirling数

参考: http://blog.csdn.net/qwb492859377/article/details/50654627 http://blog.csdn.net/acdreamers/article/details/8521134 http://blog.csdn.net/sr_19930829/article/details/40888349 球,盒子都可以分成是否不能区分,和能区分,还能分成是否能有空箱子,所以一共是8种情况,我们现在来一一讨论. 1.球同,盒不同,无空箱 C(n-1,

Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4767 Description What? MMM is learning Combinatorics!? Looks like she is playing with the bell sequence now: bell[n] = number of ways to part

贝尔数(来自维基百科)&amp; Stirling数

贝尔数 贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): Bell Number Bn是基数为n的集合的划分方法的数目.集合S的一个划分是定义为S的两两不相交的非空子集的族,它们的并是S.例如B3 = 5因为3个元素的集合{a, b, c}有5种不同的划分方法: {{a}, {b}, {c}} {{a}, {b, c}} {{b}, {a, c}} {{c}, {a, b}} {{a, b, c}}; B0

两类Stirling数

转:http://blog.csdn.net/acdreamers/article/details/8521134 第一类Stirling数 s(p,k)    s(p,k)的一个的组合学解释是:将p个物体排成k个非空循环排列的方法数. s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1 边界条件:s(p,0)=0 ,p>=1  s(p,p)=1  ,p>=0   递推关系的说明: 考虑第p个物品,p可以单独构成一个非空