数据库索引B+树

面试时无意间被问到了这个问题:数据库索引的存储结构一般是B+树,为什么不适用红黑树等普通的二叉树?

经过和同学的讨论,得到如下几个情况:

  1. 数据库文件是放在硬盘上,每次读取数据库都需要在磁盘上搜索,因此需要考虑磁盘寻道时间,我们都知道磁盘寻道开销是非常大的。同时,索引一般也是非常大的,内存不能放下,因此也会放在磁盘上。(另外,还与局部性原理与磁盘预读有关系)。

  2. B+树所有的关键字都出现在叶子节点的链表(稠密索引)中,且链表中的关键字是有序的。非叶子节点只起索引作用(稀疏索引)。

    叶子节点相当于存储了关键字的数据层。

因此,我们得出结论,由于数据存数在磁盘上,因此应该尽量减少磁盘I/O次数。恰好,B+树的叶子节点存储了关键字的数据层(我们可以称为主键),因此我们可以直接通过主键来查询数据。若是使用二叉树,二叉树索引的只是主键的位置,我还需要根据二叉树索引主键的位置,进行一次I/O操作来获取主键。

没有研究过数据库,只是和同学讨论之后做了一个总结,错误在所难免。

下面,在学习一下B树、B-树、B+树、B*树

B树

二叉搜索树:

1.所有非叶子结点至多拥有两个儿子(Left和Right);

2.所有结点存储一个关键字;

3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

如:

B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

  如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

如:

  但B树在经过多次插入与删除后,有可能导致不同的结构:

  右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;

  实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

B-树

    一种多路搜索树(并不是二叉的):

1.定义任意非叶子结点最多只有M个儿子;且M>2;

2.根结点的儿子数为[2, M];

3.除根结点以外的非叶子结点的儿子数为[M/2, M];

4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

5.非叶子结点的关键字个数=指向儿子的指针个数-1;

6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

8.所有叶子结点位于同一层;

如:(M=3)

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

1.关键字集合分布在整颗树中;

2.任何一个关键字出现且只出现在一个结点中;

3.搜索有可能在非叶子结点结束;

4.其搜索性能等价于在关键字全集内做一次二分查找;

5.自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B+树

    B+树是B-树的变体,也是一种多路搜索树:

1.其定义基本与B-树同,除了:

2.非叶子结点的子树指针与关键字个数相同;

3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

5.为所有叶子结点增加一个链指针;

6.所有关键字都在叶子结点出现;

如:(M=3)

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

2.不可能在非叶子结点命中;

3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

4.更适合文件索引系统;

B*树

B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

转自:http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx

小结

B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;

所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

时间: 2024-08-07 04:11:04

数据库索引B+树的相关文章

B树在数据库索引中的应用剖析(转载)

引言 关于数据库索引,随便Google一个Oracle index,Mysql index总有大量的结果出来,其中不乏某某索引之n条经典建议.笔者认为,较之借鉴,在搞清楚了自己的需求的基础上,对备选方案的原理有个尽可能深入全面的了解会更有利于我们的选择和决策.因为某种方案或者技术呈现出某种优势(包括可能没有被介绍到但一定存在的限制),不是定义出来的,而是因为其实现机制决定的.就像LinkedList和ArrayList分别适用于什么应用不是Document里面定义的,是由其本身的结构决定的.数据

B-树和B+树的应用:数据搜索和数据库索引

B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树:⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,-,Kn,An)其中:Ki(i=1,2,-,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,-,n),且指针Ai-1 所指

转:基于B-树和B+树的使用:数据搜索和数据库索引的详细介绍

原文地址:http://www.jb51.net/article/36184.htm B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树:⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,-,Kn,An)其中:Ki(i=1,2,-,n)为关键码,且Ki<

B-树&amp;&amp;B+树&amp;&amp;数据库索引(转)

文章来源 http://blog.csdn.net/hguisu/article/details/7786014 http://blog.sina.com.cn/s/blog_4e0c21cc01010gjo.html 一.B-树 它就是B树,不存在所谓的B减树,中间的横杠只是隔离符,即平衡多路搜索树,此处B是Balance的意思. B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不

B-树和B+树的应用:数据搜索和数据库索引【转】

B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树: ⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,-,Kn,An) 其中:Ki(i=1,2,-,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,-,n),且指针Ai-

数据库索引(结合B-树和B+树)

数据库索引,是数据库管理系统中一个排序的数据结构以协助快速查询.更新数据库表中数据.索引的实现通常使用B树及其变种B+树. 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法.这种数据结构,就是索引. 为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动). 上图展示了一种可能的索引方式.左边是数据表,一共有两列七条记录,最左边的是数据记录的物理

红黑树 B-树 B+树 数据库索引

红黑树, 是一颗有特殊性质的二叉查找树, 节点,要么红要么黑 根节点是黑的 叶节点是黑的 如果一个节点是红的,那么它的两个儿子是黑的 对任意节点而言,其道叶节点树尾端NIL指针的每条路径都包含相同数据的黑节点 在插入或删除节点时,可能会改变红黑树的性质,需要调整使得继续保持性质,常用的操作为左旋和右旋 红黑树的左旋和右旋: 左旋pivot: 以pivot-Y为轴,Y称为新的根节点,Y的左子树称为pivot的右子树 右旋pivot: 以pivot-Y为轴,Y称为新根,pivot为Y的新右子树 B-

B+树在mysql数据库索引中的使用

一:B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树. ⑵若根结点不是叶子结点,则至少有两棵子树. ⑶除根结点之外的所有非叶结点至少有[m/2] 棵子树: ⑷所有的非终端结点中包含以下信息数据:(n,A0,K1,A1,K2,-,Kn,An) 其中:n 为关键码的个数,Ki(i=1,2,-,n)为关键码且Ki<Ki+1,Ai 为指向子树根结点的指针(i=0,1,-,n),且指针Ai-1 所指子树

深入理解数据库索引采用B树和B+树的原因

前面几篇关于数据库底层磁盘文件读取,数据库索引实现细节进行了深入的研究,但是没有串联起来的讲解为什么数据库索引会采用B树和B+树而不是其他的数据结构,例如平衡二叉树.链表等,因此,本文打算从数据库文件存储以及读取说起,讲解数据库索引的由来. 我们以抛出问题的形式开始讲解: (1)数据库文件存储的方式     数据库文件存储都是以磁盘文件存储在系统中的,这也是数据库能持久化存储数据的原因. (2)从数据库读取数据的原理        从数据库读取数据,先暂且不考虑从缓存中读取数据的情况,那就是从磁