POJ 1830 开关问题

简单的高斯消元取模,答案为2^自由变元的数量,但是题目的意思把I,J搞反了,坑爹。。。


开关问题

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5425   Accepted: 2023

Description

有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

Input

输入第一行有一个数K,表示以下有K组测试数据。

每组测试数据的格式如下:

第一行 一个数N(0 < N < 29)

第二行 N个0或者1的数,表示开始时N个开关状态。

第三行 N个0或者1的数,表示操作结束后N个开关的状态。

接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。

Output

如果有可行方法,输出总数,否则输出“Oh,it‘s impossible~!!” 不包括引号

Sample Input

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

Sample Output

4
Oh,it‘s impossible~!!

Hint

第一组数据的说明:

一共以下四种方法:

操作开关1

操作开关2

操作开关3

操作开关1、2、3 (不记顺序)

Source

[email protected]

[Submit]   [Go Back]   [Status]  
[Discuss]

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>

using namespace std;

const int maxn=50;
int equ,var;
int a[maxn][maxn],x[maxn];
int free_x[maxn],free_num;

int Gauss()
{
	int max_r,col,k;
	free_num=0;
	for(k=0,col=0;k<equ&&col<var;k++,col++)
	{
		max_r=k;
		for(int i=k+1;i<equ;i++)
		{
			if(abs(a[i][col])>abs(a[max_r][col]))
				max_r=i;
		}
		if(a[max_r][col]==0)
		{
			k--;
			free_x[free_num++]=col;
			continue;
		}
		if(max_r!=k)
		{
			for(int j=col;j<var+1;j++)
				swap(a[k][j],a[max_r][j]);
		}
		for(int i=k+1;i<equ;i++)
		{
			if(a[i][col]!=0)
			{
				for(int j=col;j<var+1;j++)
					a[i][j]^=a[k][j];
			}
		}
	}
	for(int i=k;i<equ;i++)
		if(a[i][col]!=0)
			return -1;
	if(k<var) return var-k;
	for(int i=var-1;i>=0;i--)
	{
		x[i]=a[i][var];
		for(int j=i+1;j<var;j++)
			x[i]^=(a[i][j]&&x[j]);
	}
	return 0;
}

int begin[40],end[40],n;

int main()
{
	int T_T;
	scanf("%d",&T_T);
	while(T_T--)
	{
		memset(a,0,sizeof(a));
		memset(x,0,sizeof(x));
		scanf("%d",&n);
		equ=var=n;
		for(int i=0;i<n;i++)
			scanf("%d",begin+i);
		for(int i=0;i<n;i++)
			scanf("%d",end+i);
		for(int i=0;i<n;i++)
			a[i][n]=begin[i]^end[i],a[i][i]=1;
		int n1,n2;
		while(scanf("%d%d",&n1,&n2)!=EOF)
		{
			if(n1==0&&n2==0) break;
			n1--; n2--;
			a[n2][n1]=1;
		}
		int t=Gauss();
		if(t==-1)
		{
			puts("Oh,it's impossible~!!");
			continue;
		}
		printf("%d\n",1<<t);
	}
	return 0;
}

POJ 1830 开关问题,布布扣,bubuko.com

时间: 2024-12-26 11:24:46

POJ 1830 开关问题的相关文章

poj 1830 开关问题 高斯消元

mnesia在频繁操作数据的过程可能会报错:** WARNING ** Mnesia is overloaded: {dump_log, write_threshold},可以看出,mnesia应该是过载了.这个警告在mnesia dump操作会发生这个问题,表类型为disc_only_copies .disc_copies都可能会发生. 如何重现这个问题,例子的场景是多个进程同时在不断地mnesia:dirty_write/2 mnesia过载分析 1.抛出警告是在mnesia 增加dump

POJ 1830 开关问题 高斯消元,自由变量个数

http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次. 所以有n个开关,就有n条方程, 每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n] 那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2

POJ 1830.开关问题(高斯消元)

题目链接 Solutin: 将每个开关使用的情况当成未知数,如果开关i能影响到开关j,那么系数矩阵A[j][i]的系数为1. 每个开关增广矩阵的值是开关k的初状态异或开关k的目标状态,这个应该很容易想到. 方程都列好了,直接消元就好了. code /* 解异或方程组 */ #include <iostream> #include <cstring> using namespace std; const int MAXN = 50; int prim[MAXN]; int A[MAX

poj 1830 开关问题 高斯消元法

开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5854   Accepted: 2213 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作

Poj 1830 高斯消元

开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5418 Accepted: 2022 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作.你的任

POJ 1830 【高斯消元第一题】

首先...使用abs()等数学函数的时候,浮点数用#include<cmath>,其它用#include<cstdlib>. 概念: [矩阵的秩] 在线性代数中,一个矩阵A的列秩是A的线性无关的纵列的极大数目.类似地,行秩是A的线性无关的横行的极大数目. 此题如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择,既1 << n 对于r以下的行,必定全是0,那么如果a[i][n]!=0 必然出现矛盾,于是判定无解. 1 #include <iostr

【POJ】1830 开关问题(高斯消元)

http://poj.org/problem?id=1830 高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法.这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为前边消元一定会使得后边的方程左式为0) 高斯消元自由变元:自由变元就是当这些未知量一旦确定,整个方程就确定了.但是这些量是未知的.(例如x+y=5,自由变元就是1,因为无论是x还是y确定,另一个就能唯一确定),而答案要求的是方案,那么显然因为自由变元是可以随便赋值的,而这些值只有2个,开和不开,那么

【POJ 1830】 开关问题

[题目链接] http://poj.org/problem?id=1830 [算法] 列出异或方程组,用高斯消元求解 [代码] #include <algorithm> #include <bitset> #include <cctype> #include <cerrno> #include <clocale> #include <cmath> #include <complex> #include <cstdio

POJ - 1830:开关问题 (开关问题-高斯消元-自由元)

pro:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作.你的任务是,计算有多少种可以达到指定状态的方法.(不计开关操作的顺序) sol:即求自由元的个数,答案是pow(2,自由元). #include<bits/stdc++.h> #defin