OpenGL中的颜色混合功能(一)

我们知道,材料属性和光照参数可以极大地增加图形的逼真度,但除此之外,我们在对现实世界进行建模时,有许多效果是通过混合颜色的方式实现的。透明的物体,像是玻璃水杯,在它后面发射过来的光会与透明物体的颜色混合在一起。这种透明在OpenGL中的实现方式,是通过首先绘制背景物体,然后把前景物体(比如水杯)与颜色缓冲区中已经存在的颜色进行混合而实现的。在这一过程中,颜色的alpha值成分发挥了重要作用。

颜色的混合功能

在一般情况下,OpenGL在渲染时把颜色值存放在颜色缓冲区中,把每个片段(像素)的深度值存放在深度缓冲区中。当深度检测被关闭时,新的颜色值简单地覆盖颜色缓冲区中已经存在的颜色值;当深度检测被打开时,新的颜色值只有当它比原来的颜色更接近临近的裁剪平面时才会替换原来的颜色。当然,这是在OpenGL的混合功能被关闭的情况下。当混合功能被启用时,新的颜色会与颜色缓冲区中原有的颜色进行组合。通过对这些颜色进行不同的组合,可以产生许多种不同的效果。

在介绍颜色混合之前,我们需要首先明确目标颜色和源颜色这两个术语的概念。首先,已经存储在颜色缓冲区中的颜色称为目标颜色,这个颜色包含了单独的红、绿、蓝成分以及一个可选的alpha值。其次,作为当前渲染命令的结果进入颜色缓冲区中的颜色称为源颜色,它同样也包含了四种颜色成分(红、绿、蓝和可选的alpha值成分)。我们正是通过对目标颜色和源颜色进行不同的组合操作,来实现颜色混合的功能的。启用混合功能:

glEnable(GL_BLEND);

当混合功能被启用时,源颜色和目标颜色的组合方式是由混合方程式来控制的。在默认情况下,使用的混合方程式如下所示:

其中,Cf是最终计算产生的颜色,Cs是源颜色,Cd是目标颜色。S是源混合因子,D是目标混合因子。这两个混合因子可以通过下面的这个函数进行设置:

glBlendFunc(GLenum S, GLenum D);

可以看出,形参S和D都是枚举值,而不是可以直接指定的实际值。只谈概念有些模糊,让我们通过一个常见的混合函数示例来说明上述概念的实际应用:

// 设置源混合因子和目标混合因子

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

根据上面的混合函数,如果颜色缓冲区中的目标颜色为红色(1.0f,0.0f, 0.0f, 0.0f);源颜色为一种蓝色(0.0f, 0.0f, 1.0, 0.6f),它的alpha值为0.6,那么计算得出的最终颜色为:

Cd = 目标颜色 = (1.0f,0.0f, 0.0f, 0.0f)

Cs = 源颜色 = (0.0f, 0.0f, 1.0, 0.6f)

S = 源颜色alpha值 = 0.6

D = 1 - 源颜色alpha值 = 0.4

所以,根据混合方程式:

相当于:Cf = (蓝 * 0.6)+ (红 * 0.4)

最终产生的颜色是目标颜色红色与源颜色蓝色进行缩放后的组合,并且源颜色的alpha值越高,添加的源颜色成分就越多,目标颜色所保留的成分就越少。这个混合函数经常用于在一些不透明的物体前面绘制透明物体的效果。这种技巧在实现时需要首先绘制背景物体,然后再绘制经过混合的透明物体。它的效果会令你惊讶,如图所示:

让我们通过代码,来看一下Reflection示例程序的制作思路:

void RenderScene()

{

// 清空颜色缓冲区和深度缓冲区

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// ----------------------- 首先绘制地板下方的球体 --------------------

// 保存矩阵状态

glPushMatrix();

// 将光源0的位置摆放到地板下方

glLightfv(GL_LIGHT0, GL_POSITION, fLightPosMirror);

// 保存矩阵状态

glPushMatrix();

// 设置顺时针环绕的一面为多边形的正面,对多边形进行镜像

glFrontFace(GL_CW);

// 在Y轴使用-1的缩放因子来反转Y轴

glScalef(1.0f, -1.0f, 1.0f);

// 绘制地板下方的球体

DrawSphere();

// 设置逆时针环绕的一面为多边形的正面

glFrontFace(GL_CCW);

// 恢复矩阵状态

glPopMatrix();

// ----------------- 通过对地板设置透明的颜色混合效果,来实现反射的幻觉 -----------------

// 关闭光照计算

glDisable(GL_LIGHTING);

// 打开颜色混合

glEnable(GL_BLEND);

// 设置混合因子

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

// 绘制地板

DrawGround();

// 关闭颜色混合

glDisable(GL_BLEND);

// 打开光照计算

glEnable(GL_LIGHTING);

// -------------------- 最后绘制地板上方的球体 ---------------------------

// 将光源0的位置摆放到地板上面

glLightfv(GL_LIGHT0, GL_POSITION, fLightPos);

// 绘制地板上方的球体

DrawSphere();

// 恢复矩阵状态

glPopMatrix();

// 执行缓冲区的交换

glutSwapBuffers();

}

我们在进行场景的绘制时,首先以上下颠倒的方式,最先绘制地板下方的球体;然后打开混合,在球体的上面绘制一层透明的地板;最后恢复颠倒后的坐标系,绘制地板上方的球体。这三部分完成后,一幅地板反射球体的幻觉画面就完成了,如图所示:

       
   

这一部分的示例程序完整代码已经放到了GitHub上,有需要的朋友可以参考一下(https://github.com/dxm3dp/OpenGL-06-Reflection点击打开链接)。

     本文出自杜晓萌的博客,请勿用于任何商业用途,转载请保持完整性并标明出处:http://blog.csdn.net/haohan_meng

时间: 2024-08-07 08:37:52

OpenGL中的颜色混合功能(一)的相关文章

OpenGL中的颜色混合功能(二)——抗锯齿的处理

在OpenGL中,混合功能的另一个用途是抗锯齿的处理.在绝大多数情况下,一个渲染片段映射到计算机屏幕上的一个像素.因为这些像素都是正方形的,所以通常我们可以清晰的看到两种不同颜色的分界,它们就是我们通常所说的锯齿.锯齿的出现会让人觉得图像是不自然的,极为影响观感.这种锯齿现象是计算机所产生的图像的弱点,这对于我们的许多要求尽可能逼真的渲染任务,都带来了消极的影响. 为了消除图元之间的锯齿状边缘,OpenGL使用混合功能来混合片段的颜色,也就是把像素的目标颜色与周围相邻像素的颜色进行混合.从本质上

OpenGL中的多重采样

抗锯齿处理的最大优点之一就是它能够使多边形的边缘更为平滑,使渲染效果显得更为逼真和自然.点和直线的抗锯齿处理是得到广泛支持的,但遗憾的是,对多边形的平滑处理并没有在所有平台上都得到实现.并且,即使在可以使用GL_POLYGON_SMOOTH的时候,对整个场景进行抗锯齿处理也没有想象中的那么方便.这是因为,抗锯齿处理是基于混合操作的,这就需要从前到后对所有的图元进行排序,这是十分麻烦的. 在OpenGL中还有一个功能,称为多重采样(multisampling),可以用来解决抗锯齿处理中的这个问题.

openGL中的混合

    之前在项目中就使用过混合,但是研究的不深入,近期美术的一个需求让我下决心重新深入的研究了一下混合以及它在cocos2d-x中的使用,在这里分享给大家. 混合(blend,有些翻译书上把它称作混融,以下简称混合),在openGL中,当一个输入的片元通过了所有相关的片元测试,就可以在与颜色缓存中当前的内容通过某种方式进行合并了.最简单的,也是默认的方式,就是直接覆盖已有的值,实际上不能称作是合并.除此之外,我们也可以将帧缓存中已有的颜色与输入的片元颜色进行混合.这是在openGL流程上的定义

opengl中场景变换|2D与3D互转换(转)

opengl中场景变换|2D与3D互转换 我们生活在一个三维的世界——如果要观察一个物体,我们可以: 1.从不同的位置去观察它.(视图变换) 2.移动或者旋转它,当然了,如果它只是计算机里面的物体,我们还可以放大或缩小它.(模型变换) 3.如果把物体画下来,我们可以选择:是否需要一种“近大远小”的透视效果.另外,我们可能只希望看到物体的一部分,而不是全部(剪裁).(投影变换) 4.我们可能希望把整个看到的图形画下来,但它只占据纸张的一部分,而不是全部.(视口变换) 这些,都可以在OpenGL中实

CSharpGL(6)在OpenGL中绘制UI元素

CSharpGL(6)在OpenGL中绘制UI元素 主要内容 学习使用IUILayout接口及其机制,以实现在OpenGL中绘制UI元素. 以SimpleUIAxis为例演示如何使用IUILayout. 下载 您可以在(https://github.com/bitzhuwei/CSharpGL)找到最新的源码.欢迎感兴趣的同学fork之. 什么是OpenGL中的UI元素 您可以在源码中找到SimpleUIAxis这一示例. 如上图所示,有5个坐标轴,中间那个是一个普通的三维模型(元素),作为对照

Assignment 4 OpenGL中正十二面体追踪球实现(平移、旋转、多面体线框体切换)

一.使用平台    windows  8.1     visual  studio  2012    二.使用方法     鼠标左键控制旋转,鼠标右键控制平移,点击鼠标中键出现菜单可选多面体 或线框体绘制.     键盘↑↓←→控制平移,F1 和 F2 键分别为多面体和线框体绘制的切换.  三.实现简述     主函数  在 main 函数中与这次实验相关的主要有以下几个函数:  glutReshapeFunc(myReshape);  //窗口改变时重新设

GLSL 在OpenGL中向shader传递信息【转】

http://blog.csdn.net/hgl868/article/details/7872219 引言 一个OpenGL程序可以用多种方式和shader通信.注意这种通信是单向的,因为shader的输出只能是渲染到某些目标,比如颜色和深度缓存. OpenGL的部分状态可以被shader访问,因此程序改变OpenGL某些状态就可以与shader进行通信了.例如一个程序想把光的颜色传给shader,可以直接调用OpenGL接口,就像使用固定功能流水线时做的那样. 不过,使用OpenGL状态并不

OpenGL中的帧缓存

OpenGL中的帧缓存 在OpenGL窗口中, 左下角的像素为(0, 0). 一般而言, 像素(x, y)占据的矩形区域左下角为(x, y), 右上角为(x+1, y+1). 1. 缓存及其用途 [1]颜色缓存,  左前,右前,左后,右后和任意数量的辅助颜色缓存; [2]深度缓存 [3]模板缓存 [4]累积缓存 2.颜色缓存 1) 颜色缓存存储了颜色索引或RGB颜色数据, 还可能存储了alpha值. 2) 支持立体观察(stereoscopic viewing)的OpenGL实现有左颜色缓存和右

CSharpGL(26)在opengl中实现控件布局/渲染文字

CSharpGL(26)在opengl中实现控件布局/渲染文字 效果图 如图所示,可以将文字.坐标轴固定在窗口的一角. 下载 CSharpGL已在GitHub开源,欢迎对OpenGL有兴趣的同学加入(https://github.com/bitzhuwei/CSharpGL) UI控件布局关键点 ILayout 类似Winform控件那样,控件的位置.大小由其Anchor等属性决定.窗口大小改变时,控件的位置.大小会随之改变. 所以模仿Control类,直接使用Anchor作为UIRendere