在Matlab中,我们通常利用bwareaopen函数去除八邻域内面积小于一定值的连通域。
matlab函数bwareaopen──删除小面积对象
格式:BW2 = bwareaopen(BW,P,conn)
作用:删除二值图像BW中面积小于P的对象,默认情况下使用8邻域。
Opencv里没有特定的函数实现该功能,但我们可以自己设计一个孔洞填充/小区域去除的方式来实现。
函数接口设计如下:
C++
void RemoveSmallRegion(Mat& Src, Mat& Dst, int AreaLimit, int CheckMode, int NeihborMode)
其中,Src为源图像,Dst为目标图像,AreaLimit为连通域的面积,CheckMode为模式选择,其中0为去除小面积区域,1为孔洞填充。NeihborMode为邻域类型,可以为4邻域或者8邻域。
下面是实现的代码。
#include <cv.h>
#include <highgui.h>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <vector>
using namespace cv;
using namespace std;
void RemoveSmallRegion(Mat& Src, Mat& Dst, int AreaLimit=50, int CheckMode=1, int NeihborMode=0);
int main()
{
double t = (double)getTickCount();
char* imagePath = "E:\SVM\局部.jpg";
char* OutPath = "E:\SVM\局部_去除孔洞.jpg";
Mat Src = imread(imagePath, CV_LOAD_IMAGE_GRAYSCALE);
Mat Dst = Mat::zeros(Src.size(), CV_8UC1);
//二值化处理
for(int i = 0; i < Src.rows; ++i)
{
uchar* iData = Src.ptr<uchar>(i);
for(int j = 0; j < Src.cols; ++j)
{
if(iData[j] == 0 || iData[j]==255) continue;
else if (iData[j] < 10)
{
iData[j] = 0;
//cout<<'#';
}
else if (iData[j] > 10)
{
iData[j] = 255;
//cout<<'!';
}
}
}
cout<<"Image Binary processed."<<endl;
RemoveSmallRegion(Src, Dst, 20, 1, 1);
RemoveSmallRegion(Dst, Dst, 20, 0, 0);
cout<<"Done!"<<endl;
imwrite(OutPath, Dst);
t = ((double)getTickCount() - t)/getTickFrequency();
cout<<"Time cost: "<<t<<" sec."<<endl;
return 0;
}
//CheckMode: 0代表去除黑区域,1代表去除白区域; NeihborMode:0代表4邻域,1代表8邻域;
void RemoveSmallRegion(Mat& Src, Mat& Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
int RemoveCount=0; //记录除去的个数
//记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查
Mat Pointlabel = Mat::zeros( Src.size(), CV_8UC1 );
if(CheckMode==1)
{
cout<<"Mode: 去除小区域. ";
for(int i = 0; i < Src.rows; ++i)
{
uchar* iData = Src.ptr<uchar>(i);
uchar* iLabel = Pointlabel.ptr<uchar>(i);
for(int j = 0; j < Src.cols; ++j)
{
if (iData[j] < 10)
{
iLabel[j] = 3;
}
}
}
}
else
{
cout<<"Mode: 去除孔洞. ";
for(int i = 0; i < Src.rows; ++i)
{
uchar* iData = Src.ptr<uchar>(i);
uchar* iLabel = Pointlabel.ptr<uchar>(i);
for(int j = 0; j < Src.cols; ++j)
{
if (iData[j] > 10)
{
iLabel[j] = 3;
}
}
}
}
vector<Point2i> NeihborPos; //记录邻域点位置
NeihborPos.push_back(Point2i(-1, 0));
NeihborPos.push_back(Point2i(1, 0));
NeihborPos.push_back(Point2i(0, -1));
NeihborPos.push_back(Point2i(0, 1));
if (NeihborMode==1)
{
cout<<"Neighbor mode: 8邻域."<<endl;
NeihborPos.push_back(Point2i(-1, -1));
NeihborPos.push_back(Point2i(-1, 1));
NeihborPos.push_back(Point2i(1, -1));
NeihborPos.push_back(Point2i(1, 1));
}
else cout<<"Neighbor mode: 4邻域."<<endl;
int NeihborCount=4+4*NeihborMode;
int CurrX=0, CurrY=0;
//开始检测
for(int i = 0; i < Src.rows; ++i)
{
uchar* iLabel = Pointlabel.ptr<uchar>(i);
for(int j = 0; j < Src.cols; ++j)
{
if (iLabel[j] == 0)
{
//********开始该点处的检查**********
vector<Point2i> GrowBuffer; //堆栈,用于存储生长点
GrowBuffer.push_back( Point2i(j, i) );
Pointlabel.at<uchar>(i, j)=1;
int CheckResult=0; //用于判断结果(是否超出大小),0为未超出,1为超出
for ( int z=0; z<GrowBuffer.size(); z++ )
{
for (int q=0; q<NeihborCount; q++) //检查四个邻域点
{
CurrX=GrowBuffer.at(z).x+NeihborPos.at(q).x;
CurrY=GrowBuffer.at(z).y+NeihborPos.at(q).y;
if (CurrX>=0&&CurrX<Src.cols&&CurrY>=0&&CurrY<Src.rows) //防止越界
{
if ( Pointlabel.at<uchar>(CurrY, CurrX)==0 )
{
GrowBuffer.push_back( Point2i(CurrX, CurrY) ); //邻域点加入buffer
Pointlabel.at<uchar>(CurrY, CurrX)=1; //更新邻域点的检查标签,避免重复检查
}
}
}
}
if (GrowBuffer.size()>AreaLimit) CheckResult=2; //判断结果(是否超出限定的大小),1为未超出,2为超出
else {CheckResult=1; RemoveCount++;}
for (int z=0; z<GrowBuffer.size(); z++) //更新Label记录
{
CurrX=GrowBuffer.at(z).x;
CurrY=GrowBuffer.at(z).y;
Pointlabel.at<uchar>(CurrY, CurrX) += CheckResult;
}
//********结束该点处的检查**********
}
}
}
CheckMode=255*(1-CheckMode);
//开始反转面积过小的区域
for(int i = 0; i < Src.rows; ++i)
{
uchar* iData = Src.ptr<uchar>(i);
uchar* iDstData = Dst.ptr<uchar>(i);
uchar* iLabel = Pointlabel.ptr<uchar>(i);
for(int j = 0; j < Src.cols; ++j)
{
if (iLabel[j] == 2)
{
iDstData[j] = CheckMode;
}
else if(iLabel[j] == 3)
{
iDstData[j] = iData[j];
}
}
}
cout<<RemoveCount<<" objects removed."<<endl;
}
原文:大专栏 在Opencv中实现Matlab的bwareaopen函数功能
原文地址:https://www.cnblogs.com/dajunjun/p/11651546.html
时间: 2024-10-10 17:21:50