目前,市场上的智能客服机器人已经是一款成熟的SASS产品,90%以上的企业都可以直接接入,数据保存在云端或者机器人公司的数据库,部署非常方便。同时,对于一些大型集团公司或者金融类企业,对数据保密性要求比较高的,也可以实施落地化部署,所有数据均存放在企业本地服务器上。
智能客服机器人的应用场景有哪些
寒暄闲聊,有趣互动
丰富的寒暄语库,贴合业务场景,模拟真人对话亲切自然。
意向初筛,精准分流
机器人通过消息过滤实现客户意向捕捉,精准分流并触发人工服务,通过高效率的问答处理,过滤出更有价值的高净值用户。
辅助人工,高效协同
AI客服机器人全场景辅助人工客服,智能引导及快捷转人工,提升机器人至人工的流转效率,提升客户服务满意度。
未来,智能客服企业将通过大数据、智能AI交互、智能数据分析等技术,为企业实现全业务和服务流程的智能化,从售前到售后,从产品到服务,打造企业的全智能模式。
KGB知识图谱现已实现以下功能:1.文档解析:KGB知识图谱引擎,可轻松解析多种格式与版本文档:TXT、DOC、EXCEL、PPT、PDF、XML等。尤其是PDF文件,可直接解析输出为word格式文件,保留文件中表格与文字格式等重要信息。对于图片信息,OCR可自动识别并抽取图片中的文字信息。2. 知识抽取:KGB知识图谱引擎,可从结构化表格与非结构化文本中自适应识别并抽取关键知识(主体、客体、时间、地点、金额、条款等),准确率高达90%,实现知识的快速生成。3、知识关联:KGB知识图谱引擎深入挖掘知识关联,将一个个知识实体链接为具有完整意义的知识事实。并具有强大的知识推理能力,推理出暗含的知识与结论,丰富知识图谱。4、知识较验:KGB知识图谱加工厂能够对知识质量智能校验,包括对多种知识错误与冲突进行自动智能核查与修正,更有知识工程师进行知识精准校验,保证知识图谱的准确性。
在应用方面,KGB知识图谱具有以下特色:1、跨领域可扩展:知识图谱加工厂具有通用的图谱构建引擎。知识抽取、知识关联与质量核查过程不依赖特定业务知识,结合用户知识图谱构建的需求,可以快速构建用户领域知识图谱。2、知识质量智能核查:知识图谱加工厂实现对多种知识错误与冲突的智能核查与校验,并对知识库进行实时自动更新,保证知识图谱准确性。3、人机结合的服务:知识图谱加工场人机构成:90%机器+10%的人工,只需要提供语料,就可以快速得到对应的知识图谱构建成果。
原文地址:https://blog.51cto.com/10327013/2467271