scikit-learn 多分类混淆矩阵

注:有些markdown语法没渲染出来,可以简书查看:scikit-learn 多分类混淆矩阵

前面

sklearn.metrics.multilabel_confusion_matrixscikit-learn 0.21 新增的一个函数。看名字可知道是用来计算多标签的混淆矩阵的。不过也可以用它来计算多分类的混淆矩阵。MCM将多分类数据转化为2分类问题,采用one-vs-rest策略,即某一类为正样本,其余类别为负样本。每一类都作为正样本,计算混淆矩阵。按标签的顺序返回所有。
MCM 返回的每一个二分类混淆矩阵中,TN 在 [0, 0] ,FN 在 [1, 0] 是 , TP 在[1,1], FP 在 [1, 0] , 即
| TN | FP |
|--|--|
| FN | TP |

官方例子

## 如果导入报错,检查一下 sk-learn version >= 0.21
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> mcm = multilabel_confusion_matrix(y_true, y_pred,
...                             labels=["ant", "bird", "cat"])
>>> mcm
array([[[3, 1],
        [0, 2]],
       [[5, 0],
        [1, 0]],
       [[2, 1],
        [1, 2]]])

以第一个类别 ‘ant’ 为例,预测对的有2个,它的负样本,‘bird‘ 和 ‘cat‘ 预测对的有3个(‘bird’ 预测成 ‘cat’, 也算对的,因为它们是一类,都是负样本。)负样本预测成正样本的有一个。

评估指标

每一类的TP, FP等可以提取通过:

>>> tp = mcm[:, 1, 1]
>>> tn = mcm[:, 0, 0]
>>> fn = mcm[:, 1, 0]
>>> tp, tn
(array([2, 0, 2], dtype=int64), array([3, 5, 2], dtype=int64))

这里有几个常用的评估指标:

  1. 敏感性(sensitivity)也叫召回率(recall),也叫查全率。这个指标是看一下正样本中预测对的占总正样本的比例。也可以说成预测器对正样本的敏感性,越大,说明预测器对正样本越敏感。
    $$ sn=\frac{tp}{tp+fn} $$
  2. 特异性(specificity)这个和敏感性相反,敏感性算正样本的,而特异性算的是负样本的。换句话说,它是指负样本的敏感性。毕竟你的预测器,不能仅仅是对正样本敏感,负样本,就随意了。所以需要评估一下预测器对负样本的敏感性。
    $$sp=\frac{tn}{tn+fp}$$
  3. 查准率(precision), 这是看你预测为正样本中预测正确的占总的预测为正样本的比例。
    $$precision=\frac{tp}{tp+fp}$$
  4. f1值,一般而言,查全率和查准率是不能同时都很大的。举个例子:你现在有100个A和100个B,你用现在训练好的模型去预测A,预测到有80个A。但是这其中75个是正确的A。也就是说查准率是$75/80=0.9375%$,查全率是$75/100=0.75$。你觉得查全率太低,你继续改进模型。又进行了一次预测,这次预测到了95个A。其中预测正确的有85个,即查全率:$85/100=0.85$,增加了0.1,但是查准率:$85/95=0.895$下降了。你想查得越多,就更容易产生误差。为了照顾两头,使得两个指标都有不错得值,就有了f1值:
    $$F1 = \frac{2 * (precision * recall)}{ (precision + recall)}$$

很容易通过代码获得多分类中每一类的评价指标值:

>>> sn = tp / (tp + fn) ## 其它同理
>>> sn
 array([1.        , 0.        , 0.66666667])x xz

利用one-vs-rest将多分类转化为二分类问题时,往往会丢失一些信息。在负样本中有多个类别,但不管在负样本中否预测到其本身的标签,只要不是预测为正样本标签就是正确的。所以不能很好的评价rest里的预测效果。想要更好的评价多分类,应考虑下宏平均或者微平均。

参考

sklearn.metrics.multilabel_confusion_matrix

原文:scikit-learn 多分类混淆矩阵

原文地址:https://www.cnblogs.com/huanping/p/10959271.html

时间: 2024-10-07 07:02:04

scikit-learn 多分类混淆矩阵的相关文章

10. 混淆矩阵、总体分类精度、Kappa系数

一.前言 表征分类精度的指标有很多,其中最常用的就是利用混淆矩阵.总体分类精度以及Kappa系数. 其中混淆矩阵能够很清楚的看到每个地物正确分类的个数以及被错分的类别和个数.但是,混淆矩阵并不能一眼就看出类别分类精度的好坏,为此从混淆矩阵衍生出来各种分类精度指标,其中总体分类精度(OA)和卡帕系数(Kappa)应用最为广泛. 总体分类精度(OA):指被正确分类的类别像元数与总的类别个数的比值:OA值虽然能很好的表征分类精度,但是对类别像元个数极度不平衡的多类地物来说,其值收到像元数据较多类别的影

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk

图像分类中混淆矩阵精度验证法中的几个指标说明

ToolBox->Classification->PostClassification->Confusion Matrix->Using Ground Truth ROIs,可以得到如下的分类精度验证的混淆矩阵. 要看懂这个精度验证结果,需要了解几个混淆矩阵中的几项评价指标: 1.总体分类精度(Overall Accuracy) 等于被正确分类的像元总和除以总像元数.被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所有真实参考源的像元总数,如本次精度分类精度表中的Over

Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,

混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表

混淆矩阵

混淆矩阵(Confusion Matrix) 混淆矩阵是一个列表,里面包含了实际值和判断值的情况.下图是信息更加丰富的一张混淆矩阵图: 作为良好的学习模型,TN和TP值是高的,FP和FN值=0:但是很多场景下FP和FN都不是0,那么怎么评价个分类学习的效果(performance)呢? Accuracy:全准率 (TP+TN)/total = (100+50)/165 = 0.91 Misclassification Rate:差错率 (FP+FN)/total = (10+5)/165 = 0

confusion_matrix(混淆矩阵)

作者:十岁的小男孩 凡心所向,素履可往 目录 监督学习-混淆矩阵 是什么?有什么用?怎么用? 非监督学习-匹配矩阵 混淆矩阵 矩阵每一列代表预测值,每一行代表的是实际的类别.这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class). 假设有一个用来对猫(cats).狗(dogs).兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结.假设总共有 27 只动物:8只猫, 6条狗, 13只兔子.结果的混淆矩阵如上

混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)

原理 在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 num_classes x num_classes 的方阵, 其中 num_classes 表示类的数量. 这个矩阵的每一行表示真实类中的实例, 而每一列表示预测类中的实例 (Tensorflow 和 scikit-learn 采用的实现方式). 也可以是, 每一行表示预测类中的实例, 而每一列表示真实类中的实例 (Confusion matrix From Wikipedia 中的定义). 

混淆矩阵(Confusion Matrix)分析

Content ConfusionMatrix Example Talbe ofconfusion Preference Confusion Matrix 在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是错误矩阵.它是一种特定的矩阵用来呈现算法性能的可视化效果,通常是监督学习(非监督学习,通常用匹配矩阵:matching matrix).其每一列代表预测值,每一行代表的是实际的类别.这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测