浅谈动态人脸识别技术原理

人脸辨认,是依据人的脸部特征信息进行身份辨认的一种生物辨认技能。用摄像机或摄像头收集含有人脸的图画或视频流,并主动在图画中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技能,一般也叫做人像辨认、面部辨认。

人脸辨认体系的研讨始于20世纪60年代,80年代后跟着计算机技能和光学成像技能的开展得到提高,而真实进入初级的运用阶段则在90年后期,并且以美国、德国和日本的技能完成为主;人脸辨认体系成功的关键在于是否具有顶级的中心算法,并使辨认成果具有实用化的辨认率和辨认速度;“人脸辨认体系”集成了人工智能、机器辨认、机器学习、模型理论、专家体系、视频图画处理等多种专业技能,一起需结合中间值处理的理论与完成,是生物特征辨认的最新运用,其中心技能的完成,展示了弱人工智能向强人工智能的转化。

非思丸人脸辨认体系首要包含四个组成部分,分别为:人脸图画收集及检测、人脸图画预处理、人脸图画特征提取以及匹配与辨认。

人脸图画收集及检测

人脸图画收集:不同的人脸图画都能经过摄像镜头收集下来,比方静态图画、动态图画、不同的方位、不同表情等方面都可以得到很好的收集。当用户在收集设备的拍照范围内时,收集设备会主动查找并拍照用户的人脸图画。

人脸检测:人脸检测在实践中首要用于人脸辨认的预处理,即在图画中精确标定出人脸的方位和巨细。人脸图画中包含的形式特征非常丰厚,如直方图特征、色彩特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并运用这些特征完成人脸检测。

干流的人脸检测办法依据以上特征选用Adaboost学习算法,Adaboost算法是一种用来分类的办法,它把一些比较弱的分类办法合在一起,组合出新的很强的分类办法。

人脸检测进程中运用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的办法将弱分类器结构为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。

人脸图画预处理

人脸图画预处理:关于人脸的图画预处理是依据人脸检测成果,对图画进行处理并最终服务于特征提取的进程。体系获取的原始图画因为遭到各种条件的约束和随机搅扰,往往不能直接运用,必须在图画处理的前期阶段对它进行灰度校对、噪声过滤等图画预处理。关于人脸图画而言,其预处理进程首要包含人脸图画的光线补偿、灰度变换、直方图均衡化、归一化、几许校对、滤波以及锐化等。

人脸图画特征提取

人脸图画特征提取:人脸辨认体系可运用的特征一般分为视觉特征、像素计算特征、人脸图画变换系数特征、人脸图画代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的进程。人脸特征提取的办法归纳起来分为两大类:一种是依据常识的表征办法;另外一种是依据代数特征或计算学习的表征办法。

依据常识的表征办法首要是依据人脸器官的形状描绘以及他们之间的间隔特性来获得有助于人脸分类的特征数据,其特征重量一般包含特征点间的欧氏间隔、曲率和视点等。人脸由眼睛、鼻子、嘴、下巴等部分构成,对这些部分和它们之间结构联系的几许描绘,可作为辨认人脸的重要特征,这些特征被称为几许特征。依据常识的人脸表征首要包含依据几许特征的办法和模板匹配法。

人脸图画匹配与辨认

人脸图画匹配与辨认:提取的人脸图画的特征数据与数据库中存储的特征模板进行查找匹配,经过设定一个阈值,当类似度超过这一阈值,则把匹配得到的成果输出。人脸辨认就是将待辨认的人脸特征与已得到的人脸特征模板进行比较,依据类似程度对人脸的身份信息进行判别。这一进程又分为两类:一类是承认,是一对一进行图画比较的进程,另一类是辨认,是一对多进行图画匹配比照的进程

原文地址:https://blog.51cto.com/14448892/2420927

时间: 2024-11-12 17:30:22

浅谈动态人脸识别技术原理的相关文章

一文读懂人脸识别技术

近日,人脸识别技术因多次在抓逃犯的过程中"立功",再度走"红".从20世纪60年代起,人脸识别研究开启,发展到今天有哪些进展?该产业里的竞争,是人工智能投资泡沫带来的浮躁,还是市场规模将持续突进? 何谓人脸识别技术? 20世纪60年代,人脸识别工程化应用研究正式开启.初期的方法主要利用了人脸的几何结构,通过分析人脸器官特征点及其之间的拓扑关系进行辨识.这种方法简单直观,但是一旦人脸姿态.表情发生变化,则精度严重下降. 如今的解决方案多是基于主动近红外图像的多光源人脸

人脸识别技术探讨:1:1,1:小N/大N,大姿态识别,活体识别

人脸识别是一种基于人的脸部特征信息进行身份认证的生物特征识别技术.静态人脸识别和动态人脸识别静态人脸识别是在特定的区域或者范围内来采集人脸照片并进行识别,如当前常见的门禁考勤应用.又或者是输入一张照片到人脸识别系统,如Facebook应用中采集用户的标签照片.又如警察输入照片并搜索数据库查看他/她是谁.在这两种情况下,我们都是输入一张照片来进行人脸识别.静态人脸识别的工作流程包括检测人脸.人脸对齐.提取特征向量(我们在后文也会谈及),然后将提取的特征向量与数据库中的特征向量进行比较,以确定他/她

人脸识别技术及应用,二次开发了解一下

得益于移动设备和数码摄像的高速发展,人脸识别技术突飞猛进,已经成为多项产品的主要应用支撑或重要配置.本文对目前人脸识别的三种技术及其发展方向和应用进行详尽的介绍,希望能对大家的产品开发工作提供参考. 人脸识别作为一项互联网领域热门的技术,在互联网产品很多领域都有着广泛的应用. 很多产品经理在工作中经常会遇到老板或需求部门来一句:“我们来搞个人脸识别吧.”但人脸识别发展至今已经成了一个广泛概念,通过几项不同的技术提供不同的产品应用服务.不同角色的人在不同环境里说出的人脸识别,其期待的产品和背后的技

最新人脸识别技术方案

这两年,随着科技的迅速发展,人脸识别已经逐渐成为了新时期生物识别技术应用的重要领域,忘记密码了?没事儿,咱还可以"刷脸"!今天,小编将带大家了解一下最新的人脸识别技术,看看这项技术发展到哪一步了. 传统的人脸识别技术主要是基于可见光图像的人脸识别,人们也比较熟悉这样的识别方式.不过,这种方式的缺点其实非常明显,光线的限制性非常大,并不能满足实际的需要.解决光照问题的方案有三维图像人脸识别,和热成像人脸识别.但这两种技术还远不成熟,识别效果不尽人意. 迅速发展起来的一种解决方案是基于主动

PHP实现人脸识别技术

这次人脸识别技术,是实现在微信端的,也就是说利用公众微信平台,调用第三的API来实现人脸识别这项技术的. 实现的思路: 首先呢,将收集的照片,建立一个照片库,然后利用在微信平台发送的照片,去到照片库进行匹配,那么怎么匹配呢? 这就要利用第三方的API了. 这个是收集信息,然后存储到信息库(包括图谱库) 部分代码: <html> <head> <meta charset="utf-8"/> <meta name="viewport&qu

人脸识别技术应用场景与前景

随着人工智能的发展,人脸识别也不落后,争相向人们展示它的风采,在一些比较发达的城市,普遍运用刷脸的方式来解决问题,在不知不觉中大家都要靠脸吃饭了,这绝对不是贬义词.大家都知道现下流行的小鲜肉.网红什么的,都是颜值高的,偶像明星靠脸吃饭.如今不光是作为明星名人才能靠脸吃饭,我们这些普通老百姓也能如此. 人脸识别技术经历了可见光图像人脸识别.三维图像人脸识别/热成像人脸识别.基于主动近红外图像的多光源人脸识别三层进化过程,逐渐缓解和解决了光线等环境的变化对于人脸识别的影响,加之算法的不断精准演化,人

动态人脸识别系统

动态人脸识别监控系统能够实时搜索和识别目标人物,既可报警黑名单上的嫌疑人以提高公共安全,也可在商业方面用于迎接顾客.系统还能记录视频流中出现的所有人脸图像进行归档,建立视频人脸档案库,实现重点人员的运动轨迹刻画. 演示视频:点击查看 识别: 人脸管理: 人脸注册: 关键技术指标: ·支持实现黑名单人员的自动识别报警,监控名单列表容量可根据实际应用扩展: ·支持高清多人脸实时检测,检测帧率>5帧/秒: ·人脸匹配速度:100万次/秒,可根据实际应用需求动态扩展: ·每路视频同时处理人数: 6~10

Android人脸识别技术

Android人脸识别技术用到的底层库:android/external/neven/,framework 层:frameworks/base/media/java/android/media/FaceDetector.java. java层接口的限制: 1.只能接受bitmap的数据. 2.只能识别出双眼睛距离不大于20像素的人脸. 3.只能检测人脸的位置,不能对人脸匹配. 下面代码的运行效果: @Override protected void onCreate(Bundle savedIns

支持Android、iOS系统的人脸识别技术

随着深度学习方法的应用,支持Android.iOS系统的人脸识别技术的识别率已经得到质的提升,目前我司的支持Android.iOS系统的人脸识别技术率已经达到99%.支持Android.iOS系统的人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷.目前我司的支持Android.iOS系统的人脸识别技术已应用在金融.教育.景区.旅运.社保等领域. 支持Android.iOS系统的人脸识别技术主要分为两部分: 第一部为