给定一个二叉树,返回它的 前序 遍历。
示例:
输入: [1,null,2,3] 1 2 / 3 输出: [1,2,3]
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
前序遍历
前序遍历首先访问根节点,然后遍历左子树,最后遍历右子树。
用c语言来实现比较麻烦,现在大概介绍下我的思路,首先题目先要实现一个前序遍历,如果用递归,会比较简单,几行代码就可以实现,但是现在要求使用迭代发来实现。整个遍历过程是,访问根节点,然后遍历其左子树,然后再看左子树是否有其左孩子和右孩子。因为在查看左孩子之后,还要再查看根节点的右孩子,所以每次需要把根节点记录下来,需要存在栈中。所以我们需要实现一个栈,有压栈和出栈操作。另外我们需要一个链表来存放已经访问过的节点,到最后,需要把这些节点统一存储到一个数组中,然后返回。
下面来看下我码的代码
/* 链表节点 用于存储输出结果 */ struct listNode { int val; struct listNode *next; }; struct list { int count; struct listNode *head; struct listNode *tail; }; /* 栈节点,用于存储已经遍历过的根节点 */ struct StackNode { void *entry; struct StackNode *next; }; struct stack { struct StackNode *top; }; void init_stack(struct stack *s) { s->top = NULL; } void stack_push(struct stack *s, void *np) { struct StackNode *node = malloc(sizeof(struct StackNode)); node->entry = np; node->next = s->top; s->top = node; }; void *stack_pop(struct stack *s) { struct StackNode *np = s->top; void *node = np->entry; s->top = np->next; free(np); return node; }; bool isEmpty(struct stack *s) { return (s->top == NULL) ? true : false; } void init_list(struct list *l) { l->count = 0; l->head = NULL; l->tail = NULL; } void add_new_node(struct list *l, struct listNode *node) { if (!l->head) { l->head = node; l->tail = node; l->count = 1; return; } l->tail->next = node; l->tail = node; l->count++; }
这些是辅助函数
int* preorderTraversal(struct TreeNode* root, int* returnSize){ struct TreeNode *pNode = root; struct listNode *newNode = NULL; struct list *l = malloc(sizeof(struct list)); struct stack *s = malloc(sizeof(struct stack)); int *r = NULL; int i = 0; struct listNode *head = NULL; init_list(l); init_stack(s); while (pNode != NULL || !isEmpty(s)) { if (pNode != NULL) { newNode = malloc(sizeof(struct listNode)); newNode->val = pNode->val; newNode->next = NULL; add_new_node(l, newNode); stack_push(s, (void *)pNode); pNode = pNode->left; } else { pNode = (struct TreeNode *)stack_pop(s); pNode = pNode->right; } } r = malloc(sizeof(int) * l->count); head = l->head; while(head && i < l->count) { r[i] = head->val; i++; head = head->next; } *returnSize = l->count; return r; }
这个是具体的前序遍历函数。
原文地址:https://www.cnblogs.com/xingmuxin/p/11278004.html
时间: 2024-11-09 06:05:50