Codeforces Round #575 (Div. 3) B. Odd Sum Segments (构造,数学)

B. Odd Sum Segments
time limit per test3 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
You are given an array a consisting of n integers a1,a2,…,an. You want to split it into exactly k non-empty non-intersecting subsegments such that each subsegment has odd sum (i.?e. for each subsegment, the sum of all elements that belong to this subsegment is odd). It is impossible to rearrange (shuffle) the elements of a given array. Each of the n elements of the array a must belong to exactly one of the k subsegments.

Let‘s see some examples of dividing the array of length 5 into 3 subsegments (not necessarily with odd sums): [1,2,3,4,5] is the initial array, then all possible ways to divide it into 3 non-empty non-intersecting subsegments are described below:

[1],[2],[3,4,5];
[1],[2,3],[4,5];
[1],[2,3,4],[5];
[1,2],[3],[4,5];
[1,2],[3,4],[5];
[1,2,3],[4],[5].
Of course, it can be impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements. In this case print "NO". Otherwise, print "YES" and any possible division of the array. See the output format for the detailed explanation.

You have to answer q independent queries.

Input
The first line contains one integer q (1≤q≤2?105) — the number of queries. Then q queries follow.

The first line of the query contains two integers n and k (1≤k≤n≤2?105) — the number of elements in the array and the number of subsegments, respectively.

The second line of the query contains n integers a1,a2,…,an (1≤ai≤109), where ai is the i-th element of a.

It is guaranteed that the sum of n over all queries does not exceed 2?105 (∑n≤2?105).

Output
For each query, print the answer to it. If it is impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements, print "NO" in the first line. Otherwise, print "YES" in the first line and any possible division of the array in the second line. The division can be represented as k integers r1, r2, ..., rk such that 1≤r1<r2<?<rk=n, where rj is the right border of the j-th segment (the index of the last element that belongs to the j-th segment), so the array is divided into subsegments [1;r1],[r1+1;r2],[r2+1,r3],…,[rk?1+1,n]. Note that rk is always n but you should print it anyway.

Example
inputCopy
3
5 3
7 18 3 14 1
5 4
1 2 3 4 5
6 2
1 2 8 4 10 2
outputCopy
YES
1 3 5
NO
NO

题意:
给你一个n个数的数组,让你分成k个部分,使每一部分的sum和是奇数
思路:

容易知道,想让sum和为奇数,这么这部分一定有奇数个奇数。

所以想构造成k个部分的条件是 if((sum-k)%2==0) ( sum是奇数的个数)

然后从后开始贪心的分成k个部分即可,

本题坑点:要求最后一个r一定是 n 这里wa了好几次。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/

int a[maxn];
int n,k;
int main()
{
    //freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
    //freopen("D:\\common_text\code_stream\\out.txt","w",stdout);
    int t;
    gg(t);
    while(t--)
    {
        gg(n);gg(k);
        int sum=0;
        repd(i,1,n)
        {
            gg(a[i]);
            a[i]%=2;
            sum+=a[i];
        }
        if(sum<k)
        {
            printf("NO\n");
            continue;
        }
        if((sum-k)%2!=0)
        {
            printf("NO\n");
            continue;
        }
        printf("YES\n");
        std::vector<int> ans;
        for(int i=n;i>=1;i--)
        {
            if(k)
            {
                if(a[i])
                {
                    ans.push_back(i);
                    // printf("
                    // %d ",i);
                    k--;
                }
            }
        }
        ans[0]=n;
        for(int i=sz(ans)-1;i>=0;--i)
        {
            printf("%d ",ans[i] );
        }
        printf("\n");

        // cout<<endl;
    }

    return 0;
}

inline void getInt(int* p) {
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    }
    else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}

原文地址:https://www.cnblogs.com/qieqiemin/p/11247855.html

时间: 2024-12-17 15:46:13

Codeforces Round #575 (Div. 3) B. Odd Sum Segments (构造,数学)的相关文章

Codeforces Round #575 (Div. 3) D1. RGB Substring (easy version)

Codeforces Round #575 (Div. 3) D1 - RGB Substring (easy version) The only difference between easy and hard versions is the size of the input. You are given a string s consisting of n characters, each character is 'R', 'G' or 'B'. You are also given a

Codeforces Round #575 (Div. 3)记录

Codeforces Round #575 (Div. 3)记录 错过了上分的机会,上次不小心打了个div. 2结果直接掉了100多分. 我绿了,也变弱了.找下场Div. 3上上分吧. A 随便写了. 我的思路是三个东西先排序,一个人先拿最少的,另一个人拿次少的. 然后看剩下的能不能填补相差,如果能的话继续左右两边各补,补到剩1或0为止. 其实上面说这么多,答案就等于\(\lfloor \frac{a+b+c}{2} \rfloor\). 我是sb B 这些数与大小无关,我们直接统计有多少个奇数

Codeforces Round #245 (Div. 2) A - Points and Segments (easy)

水到家了 #include <iostream> #include <vector> #include <algorithm> using namespace std; struct Point{ int index, pos; Point(int index_ = 0, int pos_ = 0){ index = index_; pos = pos_; } bool operator < (const Point& a) const{ return p

Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)

Problem  Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Description Input Output Sample Input 51 2 1 2 1 Sample Output 1 1 1 2 2 题解:这个题有做慢了,这种题做慢了和没做出来区别不大... 读题的时候脑子里还意识到素数除了2都是奇数,读完之后就脑子里就只剩欧拉筛了,贪心地构造使得前缀和是连续的素数,那

Codeforces Round #575 (Div. 3)

本蒟蒻已经掉到灰名了(菜到落泪),希望这次打完能重回绿名吧...... 这次赛中A了三题 下面是本蒟蒻的题解 A.Three Piles of Candies 这题没啥好说的,相加除2就完事了 #include<bits/stdc++.h> using namespace std; typedef long long ll; int main() { ll q; scanf("%lld",&q); while(q--) { ll a,b,c; scanf("

Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)

题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列其中相邻两项差的绝对值的个数(指绝对值不同的个数)为k个.求序列. 思路:1~k+1.构造序列前段,之后直接输出剩下的数.前面的构造可以根据,两项差的绝对值为1~k构造. AC代码: #include <stdio.h> #include <string.h> int ans[200010]; bool vis[100010]; i

Codeforces Round #344 (Div. 2) E. Product Sum 二分斜率优化DP

E. Product Sum Blake is the boss of Kris, however, this doesn't spoil their friendship. They often gather at the bar to talk about intriguing problems about maximising some values. This time the problem is really special. You are given an array a of

Codeforces Round #319 (Div. 2) B Modulo Sum

直接O(n*m)的dp也可以直接跑过. 因为上最多跑到m就终止了,因为sum[i]取余数,i = 0,1,2,3...,m,会有m+1种可能,m的余数只有m种必然有两个相同. #include<bits/stdc++.h> using namespace std; const int maxn = 1e3+5; int cnt[maxn]; bool dp[maxn][maxn]; #define Y { puts("YES"); return 0; } int main(

【Codeforces Round #575 (Div. 3) 】 RGB Substring (hard version) ( FFT)

D2. RGB Substring (hard version) time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output The only difference between easy and hard versions is the size of the input. You are given a string ss cons