并发容器 concurrentHashMap--1.7 更改

1.6的解释已经很多了,昨天本来做好的文章就不忍拿出来献丑了

这篇链接就不错 http://www.infoq.com/cn/articles/ConcurrentHashMap

本文就简单叙述1.7的更改部分.

1:最明显的,采用了尝试自旋锁的机制(多核情况下尝试自旋64次(ps:put的时候,自旋会预创建),还是不行再锁)

典型代码

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // negative while locating node
            while (!tryLock()) {
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

2:解决了弱一致性的问题,1.6使用volatile类型的数组,改变数组元素的值是直接操作数组,在并发中存在一致性问题,到1.7变为UNSAFE.getObjectVolatile和UNSAFE.putOrderedObject

典型代码

 1     public V get(Object key) {
 2         Segment<K,V> s; // manually integrate access methods to reduce overhead
 3         HashEntry<K,V>[] tab;
 4         int h = hash(key);
 5         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
 6         if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
 7             (tab = s.table) != null) {
 8             for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
 9                      (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
10                  e != null; e = e.next) {
11                 K k;
12                 if ((k = e.key) == key || (e.hash == h && key.equals(k)))
13                     return e.value;
14             }
15         }
16         return null;
17     }

3:remove和rehash操作优化,优化思路暂时没研究,但remove方法现在不需要拷贝remove前的数据了---待补充

remove代码

 final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

rehash代码

 private void rehash(HashEntry<K,V> node) {
            /*
             * Reclassify nodes in each list to new table.  Because we
             * are using power-of-two expansion, the elements from
             * each bin must either stay at same index, or move with a
             * power of two offset. We eliminate unnecessary node
             * creation by catching cases where old nodes can be
             * reused because their next fields won‘t change.
             * Statistically, at the default threshold, only about
             * one-sixth of them need cloning when a table
             * doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by
             * any reader thread that may be in the midst of
             * concurrently traversing table. Entry accesses use plain
             * array indexing because they are followed by volatile
             * table write.
             */
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;
            threshold = (int)(newCapacity * loadFactor);
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry<K,V> last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }

4:增加了replace方法:如果key不存在,则直接返回false ,而非执行插入操作

 final boolean replace(K key, int hash, V oldValue, V newValue) {
            if (!tryLock())
                scanAndLock(key, hash);
            boolean replaced = false;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        if (oldValue.equals(e.value)) {
                            e.value = newValue;
                            ++modCount;
                            replaced = true;
                        }
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return replaced;
        }
时间: 2024-11-09 16:52:13

并发容器 concurrentHashMap--1.7 更改的相关文章

Java并发编程:并发容器ConcurrentHashMap

Java并发编程:并发容器之ConcurrentHashMap(转载) 下面这部分内容转载自: http://www.haogongju.net/art/2350374 JDK5中添加了新的concurrent包,相对同步容器而言,并发容器通过一些机制改进了并发性能.因为同步容器将所有对容器状态的访问都 串行化了,这样保证了线程的安全性,所以这种方法的代价就是严重降低了并发性,当多个线程竞争容器时,吞吐量严重降低.因此Java5.0开 始针对多线程并发访问设计,提供了并发性能较好的并发容器,引入

多线程之并发容器ConcurrentHashMap(一)

简介 ConcurrentHashMap 是 util.concurrent 包的重要成员.本文将结合 Java 内存模型,分析 JDK 源代码,探索 ConcurrentHashMap 高并发的具体实现机制. 由于 ConcurrentHashMap 的源代码实现依赖于 Java 内存模型,所以阅读本文需要读者了解 Java 内存模型.同时,ConcurrentHashMap 的源代码会涉及到散列算法和链表数据结构,所以,读者需要对散列算法和基于链表的数据结构有所了解. Java 内存模型 由

8.并发容器ConcurrentHashMap#put方法解析

jdk1.7.0_79 HashMap可以说是每个Java程序员用的最多的数据结构之一了,无处不见它的身影.关于HashMap,通常也能说出它不是线程安全的.这篇文章要提到的是在多线程并发环境下的HashMap——ConcurrentHashMap,显然它必然是线程安全的,同样我们不可避免的要讨论散列表,以及它是如何实现线程安全的,它的效率又是怎样的,因为对于映射容器还有一个Hashtable也是线程安全的但它似乎只出现在笔试.面试题里,在现实编码中它已经基本被遗弃. 关于HashMap的线程不

七、并发容器ConcurrentHashMap

一.简介 我们知道,HashMap是线程不安全的.而HashTable是线程安全的,但是JDK已经不建议使用HashTable,它已经被作为废除的实现. 在JDK并发包里面,ConcurrentHashMap支持并发操作,并包括HashMap的方法. JDK文档:http://tool.oschina.net/uploads/apidocs/jdk-zh/java/util/concurrent/ConcurrentHashMap.html 二.示例 以下示例,我们使用CountDownLatc

Java并发-从同步容器到并发容器

引言 容器是Java基础类库中使用频率最高的一部分,Java集合包中提供了大量的容器类来帮组我们简化开发,我前面的文章中对Java集合包中的关键容器进行过一个系列的分析,但这些集合类都是非线程安全的,即在多线程的环境下,都需要其他额外的手段来保证数据的正确性,最简单的就是通过synchronized关键字将所有使用到非线程安全的容器代码全部同步执行.这种方式虽然可以达到线程安全的目的,但存在几个明显的问题:首先编码上存在一定的复杂性,相关的代码段都需要添加锁.其次这种一刀切的做法在高并发情况下性

java并发容器(Map、List、BlockingQueue)

转发: 大海巨浪 Java库本身就有多种线程安全的容器和同步工具,其中同步容器包括两部分:一个是Vector和Hashtable.另外还有JDK1.2中加入的同步包装类,这些类都是由Collections.synchronizedXXX工厂方法.同步容器都是线程安全的,但是对于复合操作,缺有些缺点: ① 迭代:在查觉到容器在迭代开始以后被修改,会抛出一个未检查异常ConcurrentModificationException,为了避免这个异常,需要在迭代期间,持有一个容器锁.但是锁的缺点也很明显

java并发容器(Map、List、BlockingQueue)具体解释

Java库本身就有多种线程安全的容器和同步工具,当中同步容器包含两部分:一个是Vector和Hashtable.另外还有JDK1.2中增加的同步包装类.这些类都是由Collections.synchronizedXXX工厂方法. 同步容器都是线程安全的,可是对于复合操作.缺有些缺点: ① 迭代:在查觉到容器在迭代開始以后被改动,会抛出一个未检查异常ConcurrentModificationException,为了避免这个异常,须要在迭代期间,持有一个容器锁.可是锁的缺点也非常明显.就是对性能的

【Java并发编程二】同步容器和并发容器

一.同步容器 在Java中,同步容器包括两个部分,一个是vector和HashTable,查看vector.HashTable的实现代码,可以看到这些容器实现线程安全的方式就是将它们的状态封装起来,并在需要同步的方法上加上关键字synchornized. 另一个是Collections类中提供的静态工厂方法创建的同步包装类. 同步容器都是线程安全的.但是对于复合操作(迭代.缺少即加入.导航:根据一定的顺序寻找下一个元素),有时可能需要使用额外的客户端加锁进行保护.在一个同步容器中,复合操作是安全

java并发容器(Map、List、BlockingQueue)详解

Java库本身就有多种线程安全的容器和同步工具,其中同步容器包括两部分:一个是Vector和Hashtable.另外还有JDK1.2中加入的同步包装类,这些类都是由Collections.synchronizedXXX工厂方法.同步容器都是线程安全的,但是对于复合操作,缺有些缺点: ① 迭代:在查觉到容器在迭代开始以后被修改,会抛出一个未检查异常ConcurrentModificationException,为了避免这个异常,需要在迭代期间,持有一个容器锁.但是锁的缺点也很明显,就是对性能的影响

并发容器(三)非阻塞队列的并发容器

??本文将介绍除了阻塞队列外的并发容器: ConcurrentHashMap.CopyOnWriteArrayList.CopyOnWriteArraySet.ConcurrentSkipListMap.ConcurrentSkipListSet.ConcurrentLinkedQueue: 1. CopyOnWriteArrayList 是 ArrayList 的线程安全的实现,同时也可用于代替 Vector .底层实现是一个数组,其中所有可变操作(add.set 等等)都是通过对底层数组进行