DEEP LEARNING WITH STRUCTURE

DEEP LEARNING WITH STRUCTURE


Charlie Tang is a PhD student in the Machine Learning group at the University of Toronto, working with Geoffrey Hinton and Ruslan Salakhutdinov, whose research interests include machine learning, computer vision and cognitive science. More specifically, he has developed various higher-order extensions to generative models in deep learning for vision.

At the Deep Learning Summit in Boston next month, Charlie will present ‘Deep Learning with Structure‘. Supervised neural networks trained on massive datasets have recently achieved impressive performance in computer vision, speech recognition, and many other tasks. While extremely flexible, neural nets are often criticized because their internal representations are distributed codes and lack interpretability; during his presentation at the summit, Charlie will reveal how we can address some of these concerns.

We had a quick Q&A with Charlie ahead of the Deep Learning Summit, to hear more of his thoughts on developments and challenges in deep learning.

What are the key factors that have enabled recent advancements in deep learning? 
The three key factors are:
- The steadfast belief and knowledge that supervised neural networks trained with enough labelled data can achieve great test set generalization.
- The availability of high performance hardware and software, in particular, Nvidia‘s CUDA architecture and SDK. This allowed more experimentation and the learning from large-scale data.
- The development of superior models: switching to rectified linear hidden units from the sigmoid or hyperbolic tangent units and the invention of regularization techniques, specifically "Dropout".

What are the main types of problems now being addressed in the deep learning space? 
Almost all problems in statistical machine learning are currently being investigated using deep learning techniques. They include visual and speech recognition, reinforcement learning, natural language processing, medical and health applications, financial engineering and many others.

What are the practical applications of your work and what sectors are most likely to be affected?
The deep learning revolution allows models trained on big data to drastically improve accuracy. This means that many artificial intelligence recognition tasks can be now automated, which previously necessitated a human in-the-loop.

What developments can we expect to see in deep learning in the next 5 years?
Deep learning algorithms will be gradually adopted for more tasks and will "solve" more problems. For example, 5 years ago, algorithmic face recognition accuracy was still somewhat worse than human performance. However, currently, super-human performances are reported on the main face recognition dataset (LFW) and the standard image classification dataset (Imagenet). In the next 5 years, harder and harder problems such as video recognition, medical imaging or text processing will be successfully tackled by deep learning algorithms. We can also expect deep learning algorithms to be ported to commercial products, much like how the face detector was incorporated into consumer cameras in the past 10 years.

What advancements excite you most in the field?
I feel like the most exciting advance is the availability of low-energy mobile hardware that supports deep learning algorithms. This will inevitably lead to many real-time systems and mobile products which will be a part of our daily lives.

The Deep Learning Summit is taking place in Boston on 26-27 May. For more information and to register, please visit the event website here.

Join the conversation with the event hashtag #reworkDL

时间: 2024-10-01 07:25:17

DEEP LEARNING WITH STRUCTURE的相关文章

Can deep learning help you find the perfect girl?

Can deep learning help you find the perfect girl? One of the first things I did when I moved to Montreal was installing Tinder. For those of you not familiar with the online meat market, Tinder is a dating app showing nearby users you can like or dis

(转)The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo

【CS-4476-project 6】Deep Learning

AlexNet / VGG-F network visualized by mNeuron. Project 6: Deep LearningIntroduction to Computer Vision Brief Due date: Tuesday, December 6th, 11:55pm Project materials including starter code, training and testing data, and html writeup template: proj

(转) Learning Deep Learning with Keras

Learning Deep Learning with Keras Piotr Migda? - blog Projects Articles Publications Resume About Photos Learning Deep Learning with Keras 30 Apr 2017 ? Piotr Migda? ? [machine-learning] [deep-learning] [overview] I teach deep learning both for a liv

Machine and Deep Learning with Python

Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur

Applied Deep Learning Resources

Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings. Including trained models and simple methods that can be used out of the box. Mainly focusing on Convoluti

深度学习阅读列表 Deep Learning Reading List

Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press, In preparation. Review Papers Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.1

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.1 http://blog.csdn.net/sunbow0/ Spark MLlib Deep Learning工具箱,是根据现有深度学习教程<UFLDL教程>中的算法,在SparkMLlib中的实现.具体Spark MLlib Deep Learning(深度学习)目录结构: 第一章Neural Net(NN) 1.源码 2.源码解析 3.实例 第二章Deep Belief Nets(DBNs

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.2

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.2 http://blog.csdn.net/sunbow0/ 第一章Neural Net(神经网络) 2基础及源码解析 2.1 Neural Net神经网络基础知识 2.1.1 神经网络 基础知识参照: http://deeplearning.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C 2.1.2 反向传导算法