【转】机器学习加快设计周期

原文链接:https://www.maximintegrated.com/en/design/blog/machine-learning-can-speed-up-design-cycle.html

HOW MACHINE LEARNING CAN SPEED UP YOUR DESIGN CYCLE

February 15, 2017

Maybe you dream about taking your electronic designs to manufacturing without first validating their operation. All of those simulation steps take so much effort, and time-to-market pressures are relentless. But, of course, you’d never dare do it.

What if you had an effective way to streamline the simulation-based verification process? Machine learning could be your answer, says Elyse Rosenbaum, professor of electrical and computer engineering at the University of Illinois at Urbana-Champaign. Rosenbaum is also a director at the Center for Advanced Electronics through Machine Learning (CAEML), which aims to promote faster, more accurate model-based design, more accurate simulation-based design verification, and computationally efficient system-level analysis of manufacturing variations.

Rosenbaum gave a DesignCon keynote on Feb. 1 on “Machine Learning: An Enabling Technique for Electronics Modeling and Design Optimization.” She made the case that under the right circumstances, machine learning can enhance electronic design automation (EDA).

Modern EDA, noted Rosenbaum, has its limits, namely:

  • It hasn’t eliminated design respins
  • Many of the failures observed during qualification testing directly result from insufficient modeling capability (and variability can’t be modeled accurately or in a computationally efficient way)
  • Simulation-based design optimization has demonstrated limited success; often, it’s slow and impractical because of the large number of design variables involved
  • Behavioral models address some of the flaws of current simulation capabilities. However, the industry has lacked a general, systematic method for generating these models.

According to Rosenbaum, that’s because of these challenges:

  • The high dimensionality of the input space and limited knowledge of the correlations among the input parameters
  • Variability in the physical attributes of system components and subsystems
  • Difficulty of sampling and representing highly nonlinear response surfaces
  • Lack of a priori information about electromagnetic or other interactions between components

Machine Learning to the Rescue

This is where machine learning can come into play. According to Rosenbaum, the first use of the phrase “machine learning” appeared in 1959 in the IBM Journal of Research and Development: “Some Studies in Machine Learning Using the Game of Checkers.” Over the years, popular culture has shared its interpretations (remember the Star Trek episode where Captain Kirk is told to sit back and let the machine do the work?). In Rosenbaum’s view, machine learning is the application of statistical learning theory to construct accurate predictors. With enough training data, this methodology won’t be impacted even if there’s a very complex functional relationship between input(s) and output(s) and/or if there are stochastic effects.

In real time, an artist created this infographic outlining Prof. Rosenbaum’s DesignCon talk on machine learning.

“EDA is a better application for machine learning than many of the applications for which machine learning is used today,” said Rosenbaum. Using machine learning to extract models that support EDA can make engineers’ professional lives better by enabling design optimization and shorter time to market.

There are a variety of machine learning algorithms and analyses that can be applied in an EDA flow. Linear regression, logistic regression, neural networks, Kernel methods, and supervised and unsupervised learning are some examples. Consider how machine learning can support thermal design optimization for 3D-ICs, which are prone to self-heating. Rosenbaum explained that her colleagues at Georgia Tech performed the first 3D thermal simulation of a power delivery network, using the resulting thermal profile to perform circuit simulation to measure clock skew. They had to go through the simulation process over and over until they identified a design that met the requirements for clock skew. Using a statistical learning method called Bayesian optimization, the researchers reduced the number of simulations. The only stipulation, Rosenbaum noted, is that you have to model the function accurately near its minimum.

Another example Rosenbaum discussed involves surrogate model-based circuit design, in which the data determines the model structure. In RFIC design, it’s customary to include tuning knobs. However, using SPICE simulation, it’s difficult to identify the optimal set of tuning knobs because the number of simulations required would be too large. Rosenbaum’s colleagues at North Carolina State built a surrogate model of an RFIC device and, through this method, identified a design with three particular tuning knobs that would meet their performance specs.

Recurrent neural network can also be useful in EDA because it can approximate any system represented using a state space model, which covers many circuits and devices. In an example of RNN used to model a commercial buffer chip, the RNN model simulated 12X faster vs. a transistor-level model (HSPICE simulation), Rosenbaum noted.

Physical vs. Empirical Models

One of Rosenbaum’s main takeaways was, even though there are clear benefits to chip design from machine learning, there’s also a time and place for it. “Let’s acknowledge that physical models have value,” said Rosenbaum. “Remember the empirical model is always only going to be an approximation of the true input/output function. You shouldn’t use an empirical model if you can easily derive the physical model on your own.”

Clearly, machine learning brings benefits to the chip design process, as well as to ICs themselves. Maxim certainly understands the value—many of its technologies apply machine learning techniques. The company is even hosting a machine learning competition for its employees.

时间: 2024-10-17 22:20:00

【转】机器学习加快设计周期的相关文章

计算机系统的设计规则,性能评测

控制流程的三种实现方式: 全硬件,软硬结合,全软件 1:逻辑上是等价的 2:硬件实现"速度快,成本高,灵活性差,占用内存少 3:软件实现,速度慢,复制费用低,灵活性好,占用内存多,容易设计,可改性强, 适应性强,设计周期短 理论上,由两种极端实现方法 1:全硬件机器:操作系统,高级语言,应用等 2:硬件只有1位加法和分支操作,其他都用软件 软硬件实现的优缺点 软硬件取舍的基本原则: 很高的性能价格比 计算机性能评测: 计算机性能是指计算机的工作速度,是程序执行时间的倒数 计算机的性能不仅仅与计算

编程思想-模块化-模块化设计:模块化设计

ylbtech-编程思想-模块化-模块化设计:模块化设计 模块化设计,简单地说就是程序的编写不是开始就逐条录入计算机语句和指令,而是首先用主程序.子程序.子过程等框架把软件的主要结构和流程描述出来,并定义和调试好各个框架之间的输入.输出链接关系.逐步求精的结果是得到一系列以功能块为单位的算法描述.以功能块为单位进行程序设计,实现其求解算法的方法称为模块化.模块化的目的是为了降低程序复杂度,使程序设计.调试和维护等操作简单化.改变某个子功能只需相应改变相应模块即可. 1.返回顶部 1. 中文名:模

分布式机器学习的集群方案介绍之HPC实现

机器学习的基本概念 机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来(是否迟到)的一种方法.目前机器学习广泛应用于广告投放.趋势预测.图像识别.语音识别.自动驾驶和产品推荐等众多领域. 在确定了问题模型之后,根据已知数据寻找模型参数的过程就是训练,训练过程就是不断依据训练数据来调整参数的迭代,从而使依据模型作出的预测结果更加准确. HPC的基本概念 HPC就是高性能计算或高性能计算集群的简写.为了追求高性能,HPC的工作负载一般直接运行在Linux系

从涂鸦到发布——理解API的设计过程(转)

英文原文:From Doodles to Delivery: An API Design Process 要想设计出可以正常运行的Web API,对基于web的应用的基本理解是一个良好的基础.但如果你的目标是创建出优秀的API,那么仅凭这一点还远远不够.设计优秀的API是一个艰难的过程,如果它恰巧是你当前的工作任务,那么你很可能会感到手足无措. 不过,优秀的设计绝对是可以实现的.本文所描述的流程将帮助你获得成功,我们将共同研究什么是优秀的设计,以及迭代式的流程如何帮助我们实现这一目标.我们还将叙

基于Linux的智能家居的设计(1)

写在前面:做了半年的毕业设计,找到的工作与这个完全无关,发现自己现在有写不甘心,但是我还是在关注这方面的发展,自己的摸索和前人的帮助我完成了智能家居的一部分,希望这个能够给一些初学者 能够一些便利,毕竟技术是一个开放的,不属于某一个人的. 摘要 本课题主要目的是设计和实现一个基于Linux开发平台的智能家居系统.本系统主要使用PVC板做成的家居模型.本系统硬件使用基于ARM架构的samsung S3C6410芯片做成的OK6410开发板为手持终端,利用Zigbee实现网络通讯,并结合各种电子元器

记公司的原型设计软件培训课程

这里首先感谢公司,也感谢培训讲师,具体名称和姓名就不指明了,这里会用到培训讲师的讲解资料,在此表示十分感谢! 在给企业客户做系统实施时,整个实施过程存在这么几方人马:客户业务部门及人员.客户IT部门及人员.我方项目经理及实施人员.我方技术主管及开发人员.业务人员懂业务,但是大部分不懂编程技术:而技术开发人员懂程序,大部分却不懂业务.每个方面的人马都有自己的诉求,各方人马如何有效地沟通是很重要的.否则就会出现:技术人员费了好大劲搞定的技术难题或需求功能,最后发现跟业务需求完全不搭边,需要返工重做:

MachineLearning:一、什么是机器学习

简介 在介绍机器学习之前,我想先列几个关于机器学习的例子: 垃圾邮件检测:根据邮箱中的邮件,识别哪些是垃圾邮件,哪些不是.这样的模型,可以程序帮助归类垃圾邮件和非垃圾邮件.这个例子,我们应该都不陌生. 信用卡欺诈检测:根据用户一个月内的信用卡交易,识别哪些交易是该用户操作的,哪些不是.这样的决策模型,可以帮助程序退还那些欺诈交易. 数字识别:根据信封上手写的邮编,识别出每一个手写字符所代表的数字.这样的模型,可以帮助程序阅读和理解手写邮编,并根据地利位置分类信件. 语音识别:从一个用户的话语,确

【转】机器学习发展简史

本文主要参考中科院自动化研究所复杂系统与智能科学实验室王珏研究员<关于机器学习的讨论>,讨论机器学习的描述,理论基础,发展历史以及研究现状. 0引言 20世纪90年代初,当时的美国副总统提出了一个重要的计划——国家信息基本设施计划(NationalInformation Infrastructure,NII).这个计划的技术含义包含了四个方面的内容: (1)不分时间与地域,可以方便地获得信息. (2)不分时间与地域,可以有效地利用信息. (3)不分时间与地域,可以有效地利用软硬件资源. (4)

剖析设计的演化过程:关于‘设计’的设计

中国国家博物馆有一个常设的专题,是改扩建工程中的设计展.在这个展览中,入围的十个方案被陈列出来,还有后期的几次修改.定稿,最终形成了今天的国家博物馆.把招投标的方案独立陈列出来,展现接近艺术的设计感,并不是建筑业的专利.联想到之前在上海看的皮克斯动画25周年展,从草稿.模型.实验性短片到“艺术风景”影视,被解剖开的设计演化过程本身,令人心驰神迷. 昨天重新翻到<设计原本>,虽然是从计算机工程领域出发,但其中关于设计的归纳与描述,还是令我大受启发.所谓的工匠精神,就是追求精益求精的设计感吧.美术