大数据系列之分布式大数据查询引擎Presto

关于presto部署及详细介绍请参考官方链接 http://prestodb-china.com

PRESTO是什么?

Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。

Presto的设计和编写完全是为了解决像Facebook这样规模的商业数据仓库的交互式分析和处理速度的问题。

它可以做什么?

Presto支持在线数据查询,包括Hive, Cassandra, 关系数据库以及专有数据存储。 一条Presto查询可以将多个数据源的数据进行合并,可以跨越整个组织进行分析。

Presto以分析师的需求作为目标,他们期望响应时间小于1秒到几分钟。 Presto终结了数据分析的两难选择,要么使用速度快的昂贵的商业方案,要么使用消耗大量硬件的慢速的“免费”方案。

谁在使用它?

Facebook使用Presto进行交互式查询,用于多个内部数据存储,包括300PB的数据仓库。 每天有1000多名Facebook员工使用Presto,执行查询次数超过30000次,扫描数据总量超过1PB。

领先的互联网公司包括Airbnb和Dropbox都在使用Presto。

Presto是一个运行在多台服务器上的分布式系统。 完整安装包括一个coordinator和多个worker。 由客户端提交查询,从Presto命令行CLI提交到coordinator。 coordinator进行解析,分析并执行查询计划,然后分发处理队列到worker。

本文介绍Hive与Presto的优缺点:

  1. 执行效率比较:

    1. Hive是Facebook在几年前专为Hadoop打造的一款数据仓库工具。因为它主要依赖MapReduce进行运行,所以随着年龄的上升,其在速度上已不能满足日益增长的数据要求。浏览一个完整的数据集可能要花费几分到几小时,这完全是不切实际的。
    2. Presto进行简单的查询只需要几百毫秒,即使是非常复杂的查询,也只需数分钟即可完成,它在内存中运行,并且不会向磁盘写入。
  2. 原理比较:
    1. Hive是依赖MapReduce进行运行,这个在之前关于Hive的博文中是有介绍的。MR在运行过程中会将结果落入HDFS上,这个比较耗时的。见下图:
时间: 2024-12-21 18:59:01

大数据系列之分布式大数据查询引擎Presto的相关文章

大数据系列之三:大数据体系架构的重要里程碑

欧凯惯例:引子 世界上唯一不变的就是变化,大数据的架构也不例外. 这次变化的推动者,多是一些大的商业公司! 首发地址 --- Teradata 美国天睿 Teradata这家公司其实挺陌生的,但这并不能让我们忽视其在大数据方面做出的贡献.简单一句描述这家公司的贡献就是: 2008年之前,这家公司以关系型为基础,硬刚大数据,之后意识到数据实在太大大复杂了,终究实现了对非关系型数据的支持. 具体它拿关系型作为对大数据的解决方案硬刚到什么程度呢?拿一个数据说来说明白了,直到2017年,它可以基于其关系

大数据系列之分布式数据库HBase-1.2.4+Zookeeper 安装及增删改查实践

之前介绍过关于HBase 0.9.8版本的部署及使用,本篇介绍下最新版本HBase1.2.4的部署及使用,有部分区别,详见如下: 1. 环境准备: 1.需要在Hadoop[hadoop-2.7.3] 启动正常情况下安装,hadoop安装可参考LZ的文章 大数据系列之Hadoop分布式集群部署 2. 资料包  zookeeper-3.4.9.tar.gz,hbase-1.2.4-bin.tar.gz 2. 安装步骤: 1.安装zookeeper 1.解压zookeeper-3.4.9.tar.gz

Web项目演化系列--开启分布式(分离数据层)

前言 原本上一篇是打算写分离数据层的,但是在思考的过程当中发现分离数据层的时候,有一些操作是要依赖分布式锁的,因此先写了分布式锁. 对于有些项目的数据层提供的是业务接口的(返回业务所需的数据),那么当数据层压力逐渐增大的时候,如需要使用缓存的时候,就需要开发人员去修改相应的数据接口使其使用缓存,缓存和各种数据查询接口交错在一起,整个数据层的代码变得非常混乱,连重构都无法进行,只能推倒重做.所以很多的文章中,在讲解数据层的时候,都是使用统一的数据接口,如:Find.Add.Save等,那么当需要缓

王家林的云计算分布式大数据Hadoop征服之旅:HDFS&MapReduce&HBase&Hive&集群管理

一:课程简介: 作为云计算实现规范和实施标准的Hadoop恰逢其时的应运而生,使用Hadoop用户可以在不了解分布式底层细节的情况下开发出分布式程序,从而可以使用众多廉价的计算设备的集群的威力来高速的运算和存储,而且Hadoop的运算和存储是可靠的.高效,的.可伸缩的,能够使用普通的社区服务器出来PB级别的数据,是分布式大数据处理的存储的理想选择. 本课程会助你深入浅出的掌握Hadoop开发(包括HDFS.MapReduce.HBase.Hive等),并且在此基础上掌握Hadoop集群的配置.维

大数据系列(3)——Hadoop集群完全分布式坏境搭建

前言 上一篇我们讲解了Hadoop单节点的安装,并且已经通过VMware安装了一台CentOS 6.8的Linux系统,咱们本篇的目标就是要配置一个真正的完全分布式的Hadoop集群,闲言少叙,进入本篇的正题. 技术准备 VMware虚拟机.CentOS 6.8 64 bit 安装流程 我们先来回顾上一篇我们完成的单节点的Hadoop环境配置,已经配置了一个CentOS 6.8 并且完成了java运行环境的搭建,Hosts文件的配置.计算机名等诸多细节. 其实完成这一步之后我们就已经完成了Had

大数据系列(1)——Hadoop集群坏境搭建配置

前言 关于时下最热的技术潮流,无疑大数据是首当其中最热的一个技术点,关于大数据的概念和方法论铺天盖地的到处宣扬,但其实很多公司或者技术人员也不能详细的讲解其真正的含义或者就没找到能被落地实施的可行性方案,更有很多数据相关的项目比如弄几张报表,写几个T-SQL语句就被冠以“大数据项目”,当然了,时下热门的话题嘛,先把“大数据”帽子扣上,这样才能显示出项目的高大上,得到公司的重视或者高层领导的关注. 首先,关于大数据的概念或者架构一直在各方争议的背景下持续的存在着.目前,关于大数据项目可以真正被落地

玩转大数据系列之Apache Pig高级技能之函数编程(六)

原创不易,转载请务必注明,原创地址,谢谢配合! http://qindongliang.iteye.com/ Pig系列的学习文档,希望对大家有用,感谢关注散仙! Apache Pig的前世今生 Apache Pig如何自定义UDF函数? Apache Pig5行代码怎么实现Hadoop的WordCount? Apache Pig入门学习文档(一) Apache Pig学习笔记(二) Apache Pig学习笔记之内置函数(三) 玩转大数据系列之Apache Pig如何与Apache Lucen

大数据系列(2)——Hadoop集群坏境CentOS安装

前言 前面我们主要分析了搭建Hadoop集群所需要准备的内容和一些提前规划好的项,本篇我们主要来分析如何安装CentOS操作系统,以及一些基础的设置,闲言少叙,我们进入本篇的正题. 技术准备 VMware虚拟机.CentOS 6.8 64 bit 安装流程 因为我的笔记本是Window7操作系统,然后内存配置,只有8G,内存配置太低了,当然为了演示,我会将Hadoop集群中的主节点分配2GB内存,然后剩余的三个节点都是1GB配置. 所有的节点存储我都设置为50GB. 在安装操作系统之前,我们需要

大数据将促进分布式数据库发展及去Oracle

2015-09-13 张晓东 东方云洞察 点击上面的链接文字,可以快速关注"东方云洞察"公众号 分布式数据库简介 分布式数据库系统通常使用较小的计算机系统,每台计算机可单独放在一个地方,每台计算机中都可能有DBMS的一份完整拷贝副本,或者部分拷贝副本,并具有自己局部的数据库, 通过网络互相连接共同组成一个完整的.全局的逻辑上集中.物理上分布的大型数据库. 分布式并行数据库通过并行使用多个CPU和磁盘来将诸如装载数据.建立索引.执行查询等操作并行化以提升性能的数据库系统.其中最重要的关键